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ABSTRACT  

This thesis investigates the performance and limitations of a simplified vision-

guided robotic system designed to perform dynamic pick-and-place tasks using a single, 

end-mounted camera. In contrast to high-cost, multi-sensor industrial solutions, this 

approach emphasizes low-cost implementation, minimal calibration, and off-the-shelf 

components, making it a good candidate for small to mid-sized manufacturers seeking 

entry-level automation. The study explores whether such a system can achieve practical 

accuracy and reliability when operating in real-time environments, and what specific 

system parameters most critically influence performance. 

The experimental setup includes a six-axis Epson VT6 robotic manipulator 

equipped with a parallel gripper and an industrial camera mounted directly to the end of 

the arm. All vision processing and motion control were implemented using the Epson RC+ 

software suite, with no external sensors or auxiliary computing. The camera captures part 

motion on a conveyor belt, and the robot attempts to intercept the part in motion using one 

of three predictive strategies: a method based on vertical descent time, a method that 

models full diagonal travel using a closed-form kinematic solution, and an ambush-style 

method that positions the robot in advance at a fixed location and waits for the part to 

arrive. Experiments were conducted to evaluate system accuracy across three key metrics: 

positional error in the planar motion, and rotational misalignment. Each predictive strategy 

was tested under controlled baseline conditions to determine which yielded the most 

accurate and repeatable results. In addition, a set of system-level parameters—including 

scanning height, conveyor belt speed, number of velocity estimation iterations, and robot 

motion constraints—were varied independently to assess their impact on performance. 
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Results show that the Hypotenuse Method produced the most accurate positional 

predictions in the x direction and the most consistent rotational alignment, with average 

errors of 14.57 mm and 5.91°, respectively. The Ambush Method outperformed others in 

y direction accuracy, averaging only 21.12 mm of error. Overall, the system maintained 

high trial success rates in baseline configurations but exhibited significant degradation in 

performance under extreme scanning heights, fast conveyor speeds, and low velocity 

estimation iterations. Compared to industry standards, the system’s accuracy falls short of 

high-end expectations, particularly in applications requiring sub-millimeter precision or 

sub-degree alignment. However, in less demanding environments—such as basic sorting, 

semi-structured part transfers, or part identification—the results suggest that this low-cost, 

single-camera approach can serve as a viable alternative. The data collected also provide a 

valuable baseline for future optimization. 

In summary, this work presents a quantitative evaluation of a minimalist vision-

guided robotic system, establishing its strengths, limitations, and key performance 

boundaries. It offers a reference framework for practitioners and researchers seeking cost-

effective automation strategies using commercially available hardware and straightforward 

integration. 
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NOMENCLATURE 

 

Term or Symbol Definition 

x Horizontal position of the part or gripper in the global frame 

y Horizontal position of the part or gripper in the global frame 

z Vertical height or elevation of the part or gripper in the global frame  

u Angular orientation of the part or gripper, around z-axis 

T Predicted time to intercept the part (s) 

𝑣𝑥 Estimated horizontal velocity of the part in the x-axis (mm/s) 

𝑣𝑦 Estimated horizontal velocity of the part in the y-axis (mm/s) 

a Maximum acceleration of the robotic arm (mm/s²) 

R Maximum speed of the robotic arm (mm/s) 

H Camera scanning height above the conveyor (mm) 

𝐻𝑝𝑖𝑐𝑘𝑢𝑝 Pickup height or vertical position of the part in the z-axis (mm) 

LiDAR Light Detection and Ranging; a remote sensing method that uses 

laser pulses to measure distance to an object, commonly used in 

robotic systems for 3D mapping and obstacle detection. 

ROS Robot Operating System – middleware used for robotic control and 

sensor integration 

IQR Interquartile Range – used in outlier detection 

APF Artificial Potential Fields – a path planning algorithm for robotics 

RRT Rapidly-exploring Random Tree – a motion planning algorithm for 

high-dimensional spaces 

RL Reinforcement Learning – an AI method for training robots through 

experience 

DQN Deep Q-Network – a neural network architecture used in 

reinforcement learning 

RC+ Epson’s proprietary software suite for robot and vision control 

mm Millimeters – unit of linear distance 

mm/s Millimeters per second – unit of velocity 

mm/s² Millimeters per second squared – unit of acceleration 

º Degrees – unit for angular measurements 
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CHAPTER I: Introduction  

Robotic pick-and-place systems are foundational elements in modern 

manufacturing and industrial automation. These systems allow robots to detect, grasp, and 

relocate objects with high reliability across diverse production environments. Traditionally, 

achieving the precision required for these tasks has involved the use of complex multi-

sensor configurations, external vision networks, and/or sophisticated machine learning 

models. While effective, these systems present notable drawbacks, particularly for small to 

medium-sized manufacturers [1], [2]. These include high implementation and maintenance 

costs, the need for extensive and often time-consuming calibration procedures, and limited 

adaptability when production layouts or product types change. For larger industrial players 

with more infrastructure and dedicated engineering teams, such systems may be justified. 

However, for smaller-scale operations seeking cost-effective automation, these 

requirements can be significant barriers to adoption. As a result, there is growing interest 

in developing simplified, low-cost alternatives that can deliver reasonable accuracy without 

excessive system overhead [3]. 

This thesis evaluates one such alternative: a vision-guided robotic pick-and-place 

system that employs a single, end-mounted camera on a six-axis industrial robot. Unlike 

external vision setups or systems requiring intricate software pipelines, this design relies 

solely on commercially available, off-the-shelf components and the manufacturer’s 

supplied control software. By eliminating the need for additional sensors or custom 

integration, the system minimizes overall complexity and cost [3], [4]. The central research 

objective of this work is to assess the practical limitations of this simplified vision-based 

approach in dynamic environments. Specifically, the study investigates how different 
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system parameters influence accuracy and seeks to characterize the trade-offs inherent in 

this single-camera design. 

In this context, "accuracy limitations" are defined across three key dimensions: (1) 

positional error, or the difference between the predicted and actual position of the part at 

the moment of pickup; (2) angular misalignment, referring to discrepancies between the 

predicted and actual orientation of the part; and (3) repeatability, or the system's ability to 

deliver consistent results across repeated trials under the same conditions. These metrics 

reflect both the robot’s precision and the vision system's reliability, which are crucial for 

successful pick-and-place operations. 

Several system parameters were selected as experimental variables due to their 

anticipated impact on prediction performance. These included conveyor belt speed, 

scanning height of the camera, the maximum speed and acceleration constraints of the 

robot, and the number of velocity estimation iterations used to calculate part motion. By 

systematically varying these factors, the study aims to uncover their individual and 

collective effects on system performance. For instance, it was anticipated that faster 

conveyor belt speeds could introduce greater positional error, potentially caused by motion 

blur and reduced processing time [5]. It was also expected that changes in scanning height 

could influence image resolution and field of view, potentially impacting tracking 

reliability [6]. 

This kind of system is especially relevant to small and medium-sized manufacturers 

that may not have the financial or technical resources to implement complex automation 

solutions. For example, consider a small company with a single production line. This 

company may not be able to invest in advanced vision systems or custom robotic software, 
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but could still benefit greatly from a commercially available robotic arm equipped with an 

onboard camera. Even if the system does not achieve perfect accuracy in every instance, 

the cost savings and operational flexibility it offers may outweigh the marginal loss in 

performance [4]. Similarly, businesses with dynamic product lines, frequent part changes, 

or evolving layouts can leverage the system's mobility and minimal calibration needs to 

redeploy it efficiently across different tasks without incurring major setup costs. 

The initial phase of this research involved designing the robotic control framework 

and assembling the test environment. A central goal was to isolate physical and algorithmic 

factors from software engineering complexities. This was achieved by implementing a 

minimal yet robust control program that enabled the robot to scan, track, and intercept 

moving parts on a linear conveyor. The robot continuously monitored parts using its 

mounted camera, calculated future part positions based on observed velocities, and 

executed pickup motions aimed at intercepting the part as it passed underneath. Figure 1 

illustrates the core logic of this system. Once the robot is activated, it enters a feedback 

loop where it detects the part, estimates velocity, and incrementally moves toward the 

predicted intercept location. This cycle repeats for a predefined number of iterations (the 

“number of velocity estimation iterations” parameter) before the robot attempts the pickup. 

Accuracy was measured by the difference between the robot’s predicted pickup coordinates 

and the actual position of the part, at the moment of attempted pickup.  
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Figure 1: Core control logic of the vision-based system. This diagram shows how the 

program operates, using image processing, robot control, and velocity estimation. 

A key focus of the experimental phase was the evaluation of three distinct pickup 

prediction methods. The first, the Direct Kinematic (Height-Offset) method, estimated 

pickup timing based solely on vertical descent time from the camera’s scanning position to 

the conveyor surface, as illustrated in the left portion of the diagram in Figure 2. The second 

approach, the Hypotenuse Method, accounted for diagonal motion and solved for the total 

travel time using a quadratic equation. This method models the robot’s actual diagonal 

trajectory toward the predicted part location and typically resulted in better alignment. The 

third strategy, the Ambush Method, bypassed motion prediction altogether. The gripper 

pre-positions itself above the conveyor, ahead of the part, and waits for the part to pass 

underneath. This eliminates trajectory estimation error but increases sensitivity to timing 

and part velocity fluctuations. Figure 2 below offers a visual comparison of these strategies 

and serves as a conceptual reference for understanding how each method attempts part 

interception. 
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Figure 2: Visual comparison of the three pickup methods: Direct Kinematic, 

Hypotenuse, and Ambush. The part is shown on the conveyor, and the gripper is 

shown as an inverted “u” channel. 

In addition to comparing prediction strategies, the study assessed how several key 

system parameters influenced the robot’s ability to accurately track and intercept moving 

parts. One such parameter was conveyor belt speed, which was varied to observe how the 

system performed when parts moved at different velocities. Faster conveyor speeds reduce 

the time available for the robot to detect, track, and respond to an object’s motion. 

Additionally, higher speeds may introduce motion blur in the captured images, making it 

more difficult for the vision system to accurately determine part location and trajectory. 

Testing across multiple speeds helped evaluate how well the system could maintain 

accuracy under more demanding, real-time constraints. Scanning height, the vertical 

distance between the camera and the conveyor belt, was another critical parameter. Lower 

scanning heights were expected to provide better image resolution and more detailed part 
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contours, which can improve detection accuracy. However, it was anticipated that a lower 

camera position would reduce the field of view and shorten the time the object remains 

visible to the camera. Conversely, higher scanning positions were expected to increase 

visibility across a wider portion of the conveyor, but potentially degrade image quality and 

introduce greater uncertainty in part detection. Robot motion constraints, the maximum 

speed and acceleration of the robotic arm, were also varied. These limits define how 

quickly the robot can move to reach a predicted pickup position. Slower motion settings 

were anticipated to offer smoother, more controlled movement but might reduce 

responsiveness, particularly for fast-moving objects [7]. Finally, the number of velocity 

estimation iterations—the number of camera frames used to calculate the object’s speed—

was modified to study its impact on motion prediction. It was expected that using more 

iterations would yield a more reliable velocity estimate by averaging out random noise, but 

they also lengthen the observation period and delay the robot’s response. Using fewer 

iterations was anticipated to reduce latency but potentially lead to inaccurate or erratic 

predictions due to limited data. Each of these parameters represents a real-world trade-off 

between speed, accuracy, and system complexity. These parameters are shown in Table 1 

below. They are explored in greater detail in Chapter III: Design Methodology, where their 

implementation and impact on system performance are systematically analyzed. 
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Table 1: Overview of System Parameters and Their Functional Roles 

Key Parameter Description 

Conveyor Belt Speed How fast the part moves, higher speeds 

reduce tracking time and introduce motion 

blur, lower speeds reduce accuracy. 

Scanning Height The vertical distance between the camera 

and the conveyor. Lower heights improve 

image resolution but reduce visibility 

time; higher heights increase field of view 

but reduce image clarity. 

Robot Motion Limits Refers to the robot’s maximum speed and 

acceleration. Faster settings improve 

responsiveness but may introduce 

instability; slower settings offer smoother 

movement but reduce reactivity. 

Velocity Estimation Iterations Number of image frames used to estimate 

part velocity. More iterations improve 

accuracy through averaging but increase 

response time; fewer iterations reduce 

delay but risk noisy predictions. 

 

Together, these tests allowed for a broad assessment of the system’s operational 

envelope. The goal was not to optimize the system or create a comprehensive solution, but 

rather to document its limitations and evaluate its feasibility for real-world applications. In 

essence, the research seeks to answer the following overarching question: To what extent 

can a single-camera, end-mounted robotic system perform dynamic pick-and-place tasks 

in a cost-sensitive industrial setting, and what specific parameters govern its accuracy? 

 

Three primary research objectives were defined to address this question: 

1. Objective 1: Determine Achievable Accuracy of the System: Quantify the system’s 

performance across various conditions using positional, angular, and repeatability 

metrics. 
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2. Objective 2: Numerically Compare System Accuracy to Industry 

Standards: Identify how the system’s performance compares to industry standards 

with regards to robotics. 

3. Objective 3: Identify Practical Limitations of the Single-Camera Setup: Test and 

evaluate the common approaches to pickup technique, and key system parameters 

to discover how they affect pickup accuracy and reliability. 

 

These objectives give rise to specific research questions: What is the reasonable 

achievable accuracy for a single-camera, end-mounted robotic system? Which predictive 

method results in the least positional and angular error? How does each variable (e.g., 

scanning height, conveyor speed, robot motion constraints) affect the system’s accuracy 

and repeatability? Could such a system be viable for use in real-world industrial 

applications with limited resources? 

By generating controlled experimental data, this study contributes actionable insight to 

researchers and engineers working to develop low-cost, flexible automation systems. The 

findings help delineate the boundary between systems that are accurate enough for 

deployment and those requiring further refinement or alternative architectures. The 

remainder of this thesis provides a thorough literature review of related work in robotic 

vision and motion planning (Chapter II), a detailed breakdown of the system design and 

testing methodology (Chapter III), a presentation and analysis of experimental results 

(Chapter IV), and a concluding discussion on the implications of the findings and 

opportunities for future development (Chapter V). 
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CHAPTER II: Background and Literature Review  

2.1 Introduction to Vision-Guided Robotic Systems  

Vision-guided robotic systems have become a cornerstone of modern industrial 

automation, particularly in applications involving pick-and-place operations within 

dynamic environments. These systems combine robotic manipulators with visual sensing 

and motion planning to enable object recognition, localization, and interaction in real time. 

In traditional high-precision applications, such as automotive manufacturing, 

semiconductor assembly, and pharmaceutical packaging, these systems utilize a variety of 

visual and non-visual sensors to achieve robust performance across diverse conditions [1], 

[2]. 

 

2.2 Advanced Multi-Sensor Robotic Systems 

2.2.1 Multi-Camera and LiDAR Configurations  

Contemporary high-accuracy systems often employ multi-camera networks, stereo 

vision setups, or external LiDAR systems to provide rich spatial awareness. These 

configurations support advanced features such as three-dimensional object tracking, 

adaptive motion planning, and obstacle avoidance. For instance, Wang et al. implemented 

a stereo camera array to reconstruct 3D environments for robotic arms, enabling complex 

pick-and-place operations with sub-millimeter accuracy [8]. Similarly, Ge et al. integrated 

a vision system with external LiDAR to facilitate object tracking and spatial coordination 

in unpredictable environments [9]. These advanced systems, however, come at the cost of 

increased complexity. They require sophisticated calibration procedures, synchronized 

data acquisition pipelines, and custom software integration—most commonly through 
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middleware platforms such as the Robot Operating System (ROS). The computational 

overhead and financial cost of these setups limit their practical deployment in smaller-scale 

or budget-constrained industrial environments. 

 

2.2.2 Robot Operating System (ROS) Frameworks  

ROS remains a dominant architecture for robotic development due to its modularity 

and extensive open-source library. ROS-based systems benefit from a wide array of 

prebuilt packages for motion planning, perception, and hardware interfacing. However, 

some studies point out the significant overhead associated with deploying ROS, especially 

in systems where rapid prototyping and minimal configuration are essential. Guo et al. 

emphasize that ROS-based systems often require external computing units, careful 

dependency management, and multi-node communication frameworks, complicating 

deployment for applications intended to be mobile or quickly reconfigurable [10]. 

 

2.3 Robotic Motion Planning Algorithms 

2.3.1 Rapidly-exploring Random Trees (RRT) and Artificial Potential Fields (APF)  

A core technique in robotic motion planning is the Rapidly-exploring Random Tree 

(RRT) algorithm and its optimized derivatives. RRT is particularly well-suited for high-

dimensional configuration spaces, enabling real-time planning in environments with 

dynamic obstacles. Ding et al. proposed an APF-RRT hybrid model that integrates artificial 

potential fields to guide tree growth while avoiding obstacles, significantly improving 

convergence rates and motion efficiency in simulated environments [11]. Despite their 

effectiveness, these algorithms require high processing power and are typically 
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implemented alongside ROS or other high-level control platforms, making them unsuitable 

for simpler, low-cost systems limited to a single vision input. 

 

2.3.2 Reinforcement Learning Approaches  

Reinforcement Learning (RL) has gained traction as a method for endowing robots 

with adaptive, experience-driven control policies. RL models, including Deep Q-Networks 

(DQNs), have been used in conjunction with multi-camera setups to train robots to respond 

to unpredictable trajectories and perform dynamic interception. Zhang et al. developed a 

vision-based RL system that improved grasping success in cluttered environments by 18% 

after repeated training cycles [12]. Another study by Lin et al. demonstrated that RL-

enhanced trajectory planning increased interception rates by 22% compared to traditional 

methods [13]. However, RL models demand large training datasets, extended training 

periods, and substantial computing infrastructure, which poses challenges for 

implementation in compact, cost-sensitive platforms like those explored in this study. 

 

2.4 Simplified Single-Camera Systems 

2.4.1 Monocular Vision Challenges and Benefits  

By contrast, some recent efforts have investigated single-camera, end-effector-

mounted vision systems as an alternative to multi-sensor solutions. These monocular 

systems reduce hardware costs and streamline calibration requirements, offering an 

appealing solution for small-to-medium enterprises seeking robotic automation without the 

burden of complex infrastructure. For instance, Qin et al. implemented a single-camera 

system for object sorting on a conveyor, achieving a 92.5% classification success rate in a 
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controlled environment [3]. Another study by Li et al. applied monocular vision to detect 

and correct part alignment in basic assembly tasks, demonstrating consistent operation in 

low-precision applications [4]. While effective in constrained settings, these systems 

generally struggle with depth estimation and predictive motion tracking, particularly when 

object velocity varies or when the robot must coordinate timing with moving targets. 

 

2.4.2 Trajectory Prediction Models 

Direct Kinematic Method  

Trajectory prediction remains a major challenge for single-camera systems. 

Traditional kinematic models assume linear, constant-velocity motion and rely on sampling 

to forecast object trajectories. Zhang et al. explored a kinematic method that estimated 

interception timing using vertical descent time and average object velocity, resulting in 

average errors of 14.2 mm in planar positioning during controlled trials [14]. While 

computationally efficient, this approach neglects simultaneous multi-axis motion and is 

sensitive to speed variation. 

 

Hypotenuse Method  

To improve prediction accuracy, several researchers have proposed more 

sophisticated interception strategies. Xu et al. explored a hypotenuse-based method that 

considers the robot’s diagonal trajectory, including vertical and horizontal motion 

components. Their approach solved a closed-form quadratic equation to estimate 

interception time and achieved a 28% improvement in average pickup accuracy over 
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simpler vertical descent models [15]. These findings highlight the benefits of accounting 

for actual motion paths, especially in applications requiring dynamic interception. 

 

Ambush Method  

The Ambush Method represents an alternative interception strategy where the robot 

positions itself ahead of the part’s projected path and waits for the object to arrive at a fixed 

grasping position. Huang et al. applied this strategy to a conveyor-based sorting system 

and reported consistent timing alignment with moving parts at up to 50 mm/s, achieving 

successful pickup in 95% of trials under fixed velocity conditions [16]. However, this 

method requires precise calibration of timing and placement to ensure consistent alignment. 

Table 2 summarizes the key performance characteristics of each pickup method discussed 

above. The performance values listed are representative examples taken from selected 

studies in the literature and are not necessarily the best or worst reported values. 

 

Table 2: Summary of Pickup Method Performance 

Pickup Method Performance Notes 

Direct 14.2 mm planar error Tested by Zhang et al. using constant-

velocity parts; used a top-mounted camera 

and controlled environment, no diagonal 

motion modeling [14]. 

Hypotenuse 28% improvement 

over vertical descent 

models 

Xu et al. used a diagonal motion prediction 

with closed-form trajectory solutions with 

enhanced modeling [15]. 

Ambush 95% pickup success 

rate at 50 mm/s  

Huang et al. applied the method to fixed-

velocity parts on a controlled belt [16]. 
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2.5 Influence of System Parameters on Accuracy 

2.5.1 Conveyor Speed Effects  

Beyond motion prediction, several operational parameters influence the 

performance of vision-guided robotic systems. Conveyor belt speed directly affects 

observation windows and introduces variability in object tracking. According to Chen et 

al., increasing belt speed from 30 mm/s to 90 mm/s resulted in a 37% rise in average 

positional error in a monocular vision tracking system [5]. This emphasizes the difficulty 

of real-time prediction under reduced observation intervals. 

 

2.5.2 Scanning Height Impact  

Camera scanning height also plays a significant role. Wang et al. evaluated object 

recognition at different mounting heights and found that lower heights (600 mm) yielded 

an average detection accuracy of 95.1%, compared to 84.3% at 800 mm due to reduced 

pixel resolution and part size in the image frame [6]. This highlights the trade-off between 

field of view and image quality. 

 

2.5.3 Iterative Velocity Estimation  

Another important factor is the number of iterations used for velocity estimation. 

Hu et al. showed that increasing the number of sampling iterations from 5 to 10 improved 

prediction accuracy by approximately 12%, but beyond 12 iterations, performance gains 

diminished due to increased lag and system delay [17]. This demonstrates the importance 

of balancing temporal sampling with system responsiveness. 
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2.5.4 Robotic Motion Constraints  

Finally, robot-specific parameters, including speed and acceleration limits, 

constrain interception precision. Tang et al. investigated the impact of robot acceleration 

on trajectory following accuracy and observed that limiting acceleration to below 750 

mm/s² resulted in missed pickups in 20% of dynamic trials [7]. These findings underline 

the importance of tuning motion constraints to match prediction models. Table 3 provides 

a consolidated overview of the system parameter effects described above. 

 

Table 3: Summary of Key System Parameter Performance 

System Parameter Performance Notes 

Conveyor Belt 

Speed 

37% increase in positional 

error when increasing speed 

from 30 to 90 mm/s [5] 

Chen et al. used a monocular vision 

system on a testbed with slower 

robot response [5]. 

Scanning Height Detection accuracy dropped 

from 95.1% at 600 mm to 

84.3% at 800 mm [6] 

Wang et al. used high-res cameras 

and controlled lighting [6]. 

Velocity Estimation 

Iterations 

12% improvement from 5 to 

10 iterations; diminishing 

returns after 12 [17] 

Hu et al. implemented prediction in 

MATLAB with pre-processed 

frames, decreasing processing 

times [17]. 

Robot Motion 

Constraints 

20% missed pickups when 

acceleration limited below 

750 mm/s² [7] 

Tang et al. tested robotic arms in 

high-speed industrial setups with 

external sensing and more complex 

part motion [7]. 

 

2.6 Summary and Identified Research Gap  

While prior literature demonstrates that complex multi-sensor and multi-

algorithmic systems can achieve exceptional performance in dynamic pick-and-place tasks, 

there is comparatively little work investigating the potential and limitations of minimalist 

configurations. This thesis aims to address that gap by evaluating a single-camera, end-

mounted vision system integrated with an off-the-shelf six-axis robot. The results offer 
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insight into the practical trade-offs between system simplicity and predictive accuracy, 

particularly for small-scale manufacturers seeking affordable, modular automation 

solutions. 
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CHAPTER III: DESIGN METHODOLOGY 
 

3.0 Research Objectives and Associated Methods 

This study is guided by three primary research objectives, each designed to evaluate 

different aspects of the single-camera robotic pick-and-place system and to support broader 

conclusions about its industrial applicability. This section outlines each objective, followed 

by a clear description of the corresponding methodology used to address it. 

 

Objective 1: Determine Maximum Achievable Accuracy 

To address this objective, the system was subjected to a series of tests using three 

distinct predictive pickup strategies: the Direct Kinematic Method, the Hypotenuse 

Method, and the Ambush Method. Each method represents a different approach to 

predicting the part's future location based on visual tracking and robot motion planning. 

System accuracy was quantified by comparing the predicted pickup position and 

orientation of a moving part to its actual position and orientation at the time of attempted 

grasp. The evaluation metrics included positional error in the x and y axes (in millimeters) 

and rotational error u (in degrees). Each method was tested in controlled conditions to 

identify the most accurate configuration. 

 

Objective 2: Numerically Compare System Accuracy to Industry Standards 

This objective involved comparing the accuracy achieved in experimental trials to 

performance benchmarks reported in relevant literature and industry data. The evaluation 

criteria included average positional errors (x and y), rotational errors (u), and reliability 

across multiple trials (expressed as a success rate). Results from this study were analyzed 
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in relation to accuracy levels commonly found in more complex vision-guided systems, 

allowing for a practical comparison between low-cost and high-end solutions. 

 

Objective 3: Identify Practical Limitations of the Single-Camera Setup 

To explore the inherent limitations of this system, additional variables were tested 

independently. These included conveyor belt speed, scanning height, velocity estimation 

iteration count, and robot motion limits (maximum speed and acceleration). Each of these 

parameters represents a potential constraint in real-world deployment, and varying them 

helped uncover the boundaries of the system's reliable performance. Methodologically, this 

involved isolating one variable at a time, holding others constant, and measuring the 

resulting changes in positional and rotational accuracy. 

 

With these objectives defined and the methodological alignment established, the 

following sections provide a detailed description of the system's design and the 

experimental procedures used in this study. 

 

3.1 System Development and Architecture 

The robotic platform developed for this study was designed to emulate a realistic 

industrial pick-and-place cell, but with a focus on simplicity, modularity, and cost-

effectiveness. The goal was to assess the accuracy of a vision-guided robot system that uses 

only one camera mounted directly on the robotic end-effector—a configuration that 

dramatically reduces system complexity. 
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To maintain accessibility and reproducibility, only off-the-shelf hardware 

components were used. The robotic arm chosen was the Epson VT6, a six-axis industrial 

manipulator known for its compact size and sufficient precision for light assembly tasks 

[19]. This arm was outfitted with an OnRobot 2FG7 parallel gripper [20], selected for its 

mechanical reliability and suitability for small-to-medium parts. A 5.0 Megapixel Epson 

GigE industrial camera [21] was securely mounted to the front of the gripper, ensuring that 

all vision data was collected from the same point as the pickup action. This eliminated the 

need for external cameras or multiple coordinate transformations. System control and 

programming were managed through the Epson RC+ 7.0 development environment [22], 

which integrates both vision processing and motion programming. This platform was ideal 

for minimizing software overhead while maintaining full control of all system components, 

which are shown in Table 1 below, and the setup schematic is shown in Fig. 3. 

 

Table 4: Setup Components 

Device Parameter 

Robotic Arm Six-axis 

Camera Monochromatic, 2560 

x 1920 Resolution, 14 

fps capture speed 

End Effector: Gripper Two finger parallel, 18 

to 55 mm grip length 

Control Software Built-in manufacturer 

software in BASIC 

Conveyor Belt 0 to 400 mm/s linear 

speed 

 

Two main processes were developed within the software environment: 

• VisionTask Function: Responsible for continuously capturing images of the 

conveyor and processing them to detect the part's position and orientation. The 
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vision tools included in Epson RC+ were used to compare each frame to a calibrated 

template of the part, allowing extraction of the part's center position in x and y, as 

well as its angular orientation (u). 

• RobotMotionControl Function: This function controlled the motion of the robot 

based on visual input. It executed tracking, velocity estimation, and predictive 

calculation. The robot would move in synchronization with the part along the 

conveyor, maintaining a fixed scanning height until the pickup prediction was 

complete. 

 

During operation, the robot iteratively collected position data from the VisionTask and 

stored it in dedicated arrays. By analyzing the time stamps between frames, it calculated 

instantaneous velocities in x and y. After a specified number of iterations, the robot 

computed the average velocity and used one of the three predictive methods to determine 

where the part would be by the time the robot reached it. To reduce early noise, the first 

three position readings in each trial were excluded from velocity averaging. This helped 

account for mechanical lag or error during initial robot movement. Importantly, the image 

processing was kept intentionally simple to reflect a realistic industrial scenario where 

high-performance systems may not be available. No machine learning or advanced 

computer vision algorithms were used. This ensured that the evaluation was focused solely 

on hardware constraints and basic predictive logic.  
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3.2 Experimental Testing Methodology 

After constructing the physical and software infrastructure, testing proceeded to 

systematically evaluate the system's performance under a variety of controlled conditions. 

Each test was designed to isolate the effects of a specific variable while keeping others 

constant. The baseline configuration was selected based on practical observations during 

system development. This configuration offered reliable performance without being overly 

optimized. The key baseline values are summarized in Table 5. Each variable under study 

was varied independently while others were held at baseline. This allowed for clean 

attribution of performance changes to the variable being tested. A visual overview of the 

experimental setup is shown in Fig. 3., and Fig. 4. This includes the Epson VT6 robotic 

arm, the conveyor system, the gripper, and the end-mounted camera used throughout 

testing. Baseline values for each experimental variable were selected based on prior 

research findings, intuition, and practical engineering judgment. For most variables (such 

as conveyor speed, scanning height, velocity estimation iterations, and robot motion 

constraints), baseline settings were established before testing and were held constant 

throughout testing, even if subsequent results indicated that alternative settings might offer 

improved performance. However, for the pickup method variable, all methods were 

initially tested, and the Hypotenuse Method was selected as the baseline for subsequent 

experiments based on its superior performance relative to the other tested approaches. This 

selection helped ensure that the system’s pickup strategy did not artificially limit the 

performance observed when varying other parameters. 
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Table 5: Key Variable Baseline Values 

Key Variable Baseline 

Pickup Method Hypotenuse 

Iteration Count 9 

Scanning Height 770 mm 

Conveyor Speed 50 mm/s 

Speed Limit 1000 mm/s 

Acceleration Limit 1000 mm/s2 

 

 

 

Figure 3: Diagram of Experimental Setup. Important components and variables are 

listed, such as the camera, gripper, part, conveyor belt, scanning and pickup height,  
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Figure 4: Experimental Setup. This photo shows the setup for all testing and 

development, all key components are shown. 

 

3.2.1 Predictive Pickup Methods 

Three pickup strategies were developed to compare how different motion 

assumptions affected system accuracy: 

Method 1 – Direct Kinematic Approach: 

The first method assumed that the primary motion limiting factor was the robot’s 

vertical descent to the pickup height. The robot calculated the time required to traverse the 
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vertical distance, H - 𝐻𝑝𝑖𝑐𝑘𝑢𝑝 , using known acceleration a, and maximum velocity R, 

following a trapezoidal motion profile: 

 

 
𝑇 =

2𝑅

𝑎
+

(𝐻 − 𝐻𝑝𝑖𝑐𝑘𝑢𝑝)

𝑅
−

𝑅2

𝑎𝑅
 (1) 

 

Where: 

• H is the scanning height (shown in Fig. 3. as “Scanning Height”) 

• 𝐻𝑝𝑖𝑐𝑘𝑢𝑝 is the pickup height (shown in Fig. 3. as “Pickup Height”) 

• R is the maximum robot velocity 

• a is the robot’s maximum acceleration 

 

This equation was derived using simple kinematic motion with the set acceleration and 

maximum velocity of the robot. The predicted pickup position in the x and y directions, 

𝑥𝑝𝑟𝑒𝑑 and 𝑦𝑝𝑟𝑒𝑑  respectively, was calculated as: 

 

 𝑥𝑝𝑟𝑒𝑑 = 𝑥0 + 𝑣𝑥𝑇,  𝑦𝑝𝑟𝑒𝑑 = 𝑦0 + 𝑣𝑦𝑇 
(2) 

Where: 

• x0 / y0 are the last known position of the part, as detected by the vision system 

• vx / vy are the estimated velocities of the part in each direction 

• T is the estimated time required for the end effector to reach the predicted pickup 

location. 
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Method 2 – Hypotenuse-Based Trajectory Model: 

This refined method accounted for the fact that the robot moves along a diagonal 

(hypotenuse) path, rather than a purely vertical descent. The interception time T was 

calculated by solving the following quadratic: 

 

 
(𝑅𝑇 −

𝑅2

𝑎
)

2

= 𝐻2 + (𝑥0 + 𝑣𝑥𝑇)2 + (𝑦0 + 𝑣𝑦𝑇)
2
 

(3) 

 

This equation was derived by modeling the robot’s motion along the hypotenuse of a right 

triangle formed between the vertical scanning height offset and the predicted horizontal 

distance of the part. By treating the diagonal path as a single motion segment, the solution 

incorporates both spatial geometry and the trapezoidal motion profile described in Method 

1 to estimate the total travel time. The quadratic was solved for T, yielding a more precise 

estimate of the interception time considering the true 3D path traveled. 

 

𝑇 =
−(2𝐵𝑥0𝑣𝑥 + 2𝐵𝑦0𝑣𝑦) + √(2𝐵𝑥0𝑣𝑥 + 2𝐵𝑦0𝑣𝑦)

2
− 4(𝐵2 − 𝑣𝑥

2 − 𝑣𝑦
2)(𝐴2 − 𝐻2 − 𝑥0

2 − 𝑦0
2)

2(𝐵2 − 𝑣𝑥
2 − 𝑣𝑦

2)
 (4) 

 

 

Method 3 – Ambush (Wait-at-Location) Strategy: 

The third method altered the pickup behavior entirely. Instead of predicting a 

moving interception point, the robot moved directly to a pre-determined ambush distance, 

𝑥𝑎𝑚𝑏𝑢𝑠ℎ and 𝑦𝑎𝑚𝑏𝑢𝑠ℎ, ahead of the part’s trajectory. Upon arrival, the robot waited until 

the part arrived under the gripper, then executed the pickup: 
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 𝑥𝑎𝑚𝑏𝑢𝑠ℎ = 𝑥0 + 𝑣𝑥𝑇𝑓𝑖𝑥𝑒𝑑 ,  𝑦𝑎𝑚𝑏𝑢𝑠ℎ = 𝑦0 + 𝑣𝑦𝑇𝑓𝑖𝑥𝑒𝑑 
(5) 

 

Where 𝑇𝑓𝑖𝑥𝑒𝑑 was a predefined wait time optimized for system response. This approach 

minimized error introduced by incorrect velocity predictions or sudden variations in part 

speed. 

 

3.2.2 Additional Variable Changes 

Beyond pickup strategies, other variables were tested to assess practical system 

limitations:  

• Iteration Count: Number of scans used for velocity averaging. Tested from 8 to 14 

iterations. Upper and lower limits were chosen due to performance drop off—lower 

values led to high noise; higher values increased delay and risk of missing the part.  

• Scanning Height: Distance between the camera and conveyor. Tested from 650 mm 

to 800 mm in 30 mm increments. Lower heights improved image quality but 

shortened observation window. Higher heights offered more coverage but less 

detail. 

• Conveyor Speed: Set between ~5% and ~20% of max speed. Higher speeds made 

it difficult for the robot to intercept. Lower speeds caused motor instability.  

• Robot Motion Limits: Robot max speed and acceleration were varied from 500 to 

2000 mm/s and mm/s², in increments of 500. At low values, the robot could not 

reach the pickup point in time. At high values, system accuracy decreased due to 
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mechanical limitations. Each of these variables was tested using the same pickup 

protocol described in the next section. 

 

3.2.3 General Testing Procedure 

Each trial began by placing a test part on the conveyor at a randomized orientation. 

The system began tracking the part using its vision tools and performed several scan 

iterations to collect position and velocity data. Once enough data was collected, the robot 

computed a predicted pickup point using the selected method. It then moved to this location 

and executed the pickup maneuver. The predicted pickup position for each trial was 

generated by the vision-processing algorithm and displayed to the user through the 

program’s interface. The x, y, and u coordinates provided by the system were recorded . At 

the moment of pickup, the conveyor was stopped, and the actual part position was recorded. 

To record the actual part position, the robot was manually jogged using the Epson RC+ 

interface until the center of the gripper was visually aligned with the center of the part. 

Once aligned, the robot’s displayed position values were recorded directly from the control 

panel, providing the ground truth x, y, and u coordinates for each trial. Positional accuracy 

was defined as the absolute difference between predicted and actual part locations in x and 

y (in mm). Rotational accuracy was the angular error in u (in degrees). Each configuration 

was tested over 10 trials. Data was averaged, and standard deviations were calculated to 

assess consistency. Average data represents the average of the x and y positional errors 

only. Rotational error (u) is excluded from this calculation to ensure consistent unit 

handling and reflect pure displacement accuracy. This procedure was repeated for every 
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pickup method and every variable range. This ensured a fair and consistent comparison 

across all test conditions. 

 

3.2.4 Data Processing and Outlier Removal 

During the experimental testing described above, several individual trials across 

multiple configurations produced anomalous data points that deviated significantly from 

the rest of the collected values. These outliers—characterized by unusually high or low 

error measurements—risked skewing the averages, variances, and graphical 

representations of system accuracy. To improve the clarity, consistency, and 

interpretability of the results, an outlier detection and removal process was implemented 

prior to final data analysis. The method selected for outlier identification was the box plot 

method, a statistical approach commonly used for identifying outliers in small or non-

normally distributed datasets. A box plot distributes the data based on quarters. The key 

component used in this analysis is the interquartile range (IQR), which is calculated as the 

difference between the third quartile (Q3) and the first quartile (Q1). This range captures 

the middle 50% of the data. Any point that lies below Q1 minus 1.5 times the IQR or above 

Q3 plus 1.5 times the IQR is flagged as a potential outlier. This method is particularly 

effective for the dataset used in this study, where each configuration included only 10 trials 

and the data distributions could not be assumed to be Gaussian. Across the full dataset of 

230 trials, 47 trials were identified and excluded as outliers based on the established 

criteria. This corresponds to approximately 2.25 outliers per configuration, with each 

configuration consisting of 10 trials. While some configurations exhibited no outliers, most 

configurations saw between two and three outliers removed. For each tested 
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configuration—specifically, each pickup method, each value of scanning height, conveyor 

belt speed, velocity estimation iteration count, and robot motion constraints—the full set 

of ten trial results was first copied into a new analysis sheet to preserve the raw data 

(available in the Appendix). The box plot method was then applied independently to the x, 

y, and u error values associated with each configuration. Any data point falling outside the 

calculated IQR bounds for a given error axis was excluded from final calculations of 

average, minimum, maximum, and standard deviation, as well as the plots. This allowed 

the analysis to focus on consistent system behavior while minimizing the influence of rare 

anomalies. 

Additionally, to compare the error across variables with different units (such as 

distance in millimeters and rotation in degrees), a normalized error metric was employed. 

The normalized error is calculated by dividing the error in each direction (x, y, and u) by 

the maximum observed error value for that specific variable across all tests. This results in 

a unitless value between 0 and 1, enabling direct comparison. The normalized error for 

each test case is then computed as the average of the normalized x, y, and u errors. This 

approach is necessary because averaging errors with differing units directly would yield 

misleading results. Normalizing each error by its maximum observed value allows for the 

aggregation of these metrics while maintaining proportionality and comparability. The 

comparison of normalized error between test configurations was important for evaluating 

the overall accuracy of the system, as necessary for Objective 1.  
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CHAPTER IV: RESULTS  

4.0 Results by Research Objectives 

This chapter presents the results of the experimental evaluation of the vision-guided 

robotic system, organized around the three primary research objectives outlined in Chapter 

I and restated in Chapter III. This structure is intended to ensure that the experimental 

findings are interpreted in the context of the original goals of the study. Each section is 

dedicated to one objective and includes the data, observations, and analysis that directly 

address the corresponding research question. It is important to note that no data was deleted 

from the project archive. All original values, including those classified as outliers, have 

been retained and are included in the appendix. The results presented in Chapter IV are 

based exclusively on the filtered dataset, with all statistical metrics (including average, 

range, and standard deviation) calculated from the outlier-excluded trials.  

The first research objective was to determine the maximum achievable accuracy of 

the system using only a single, end-mounted camera as the sole sensor. This objective was 

pursued by evaluating the performance of three unique predictive pickup methodologies 

under controlled conditions. Each method—Direct Kinematic, Hypotenuse, and Ambush—

was subjected to a consistent testing protocol, and the accuracy was quantified using three 

key metrics: the difference between the predicted and actual position in the x direction, the 

difference in the y direction, and the rotational error u in degrees. These results are 

thoroughly analyzed in Section 4.1. By examining each of these predictive approaches 

under identical conditions, this objective aimed to establish a baseline understanding of the 

system’s optimal performance capabilities, while also highlighting the relative strengths 

and weaknesses of each motion model. 
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The second objective was to compare the system’s accuracy with relevant industry 

benchmarks and published results from other vision-guided robotic systems. While this 

study does not aim to create a production-ready system that competes directly with 

advanced multi-sensor robotic platforms, a key goal was to assess how a simplified setup 

performs in relation to the broader landscape of industrial automation. Section 4.2 explores 

this objective by drawing comparisons between the positional and angular accuracy values 

achieved during testing and the typical tolerances or performance metrics reported in 

existing literature. These comparisons are intended to contextualize the system’s 

performance, not as a direct competitor to high-end systems, but as a cost-effective solution 

for environments where ultra-high precision may not be necessary, and where flexibility, 

affordability, and ease of deployment are prioritized. 

The third and final objective was to identify practical limitations of a single-camera 

vision-guided robotic system under realistic dynamic conditions. To accomplish this, a 

series of additional tests were conducted to assess the impact of various independent system 

parameters. These variables—scanning height, conveyor belt speed, the number of tracking 

iterations, and the robot’s acceleration and velocity limits—were methodically varied, with 

all other conditions held constant. The goal was to isolate each variable’s contribution to 

the overall accuracy of the system and, in doing so, reveal the most critical constraints 

imposed by the simplified design. Section 4.3 presents these results, focusing specifically 

on observed performance drops, failure modes, and outlier behavior. This analysis also 

identifies which parameters were most sensitive to change and which ones offered the most 

improvement when tuned correctly. 
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Across all experiments, a consistent evaluation framework was applied. Each trial 

began with the robot tracking a part moving at a steady speed along a linear conveyor belt, 

calculating the part’s instantaneous velocity using a fixed number of scan iterations, and 

then executing one of the three pickup strategies. The predicted pickup location—both in 

terms of position and orientation—was then compared to the actual location of the part at 

the time of the attempted grasp. Absolute errors were recorded for each trial and aggregated 

across multiple runs to produce meaningful average values, standard deviations, and 

observed ranges. In addition to these quantitative results, notable failure modes and edge-

case behaviors were recorded, including trials where the robot failed to complete the pickup 

due to incorrect predictions or timing misalignments. 

By organizing the results around the core research objectives, this chapter ensures 

that each experimental outcome directly contributes to answering the overarching research 

questions posed in this study. The following sections detail these findings, beginning with 

the evaluation of the three predictive pickup methods and their corresponding performance 

metrics under baseline conditions. 

 

4 .1 Maximum Achievable Accuracy 

This section presents the measured performance of the robotic system across the 

three tested predictive pickup methodologies: the Direct Kinematic Method, the 

Hypotenuse-Based Trajectory method, and the Ambush Method. All three methods were 

evaluated under identical baseline conditions, which included a fixed scanning height of 

770 mm, a conveyor belt speed of 50 mm/s, a robot velocity limit of 1000 mm/s, an 

acceleration limit of 1000 mm/s², and a velocity estimation iteration count of 9. These 
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parameters were chosen based on iterative refinement during the development phase and 

represent a stable configuration for evaluating and comparing predictive pickup accuracy 

across all three strategies. Each method was subjected to ten independent trials. For each 

trial, the part's actual position at the time of the robotic gripper's attempted pickup was 

compared to the system's predicted location. The system’s prediction was compared against 

the actual observed location of the part to determine the error in three components: linear 

displacement in the x and y directions, and angular displacement about the u-axis. These 

three values represent the difference between the predicted and actual position and 

orientation of the part at the time of pickup. Figure 5 provides a visual representation of 

these error components, illustrating a top-down view of the conveyor belt system. As the 

part moves along the belt, the vision system predicts its future location and orientation. The 

diagram highlights the discrepancy between this predicted location and the part’s actual 

position when the robot attempts to pick it up, with each error component labeled 

accordingly. In the error visualization shown in Fig. 5, the error components are denoted 

as Ex, Ey, and Eu, representing the errors in the x direction, y direction, and rotational 

orientation, respectively. Moving forward in the results, these components are collectively 

referred to as ‘displacement inaccuracy,’ where Ex corresponds to error in x, Ey to error in 

y, and Eu to rotational error. These variables are plotted as the dependent variables on the 

vertical axes of the subsequent results graphs, consistently reflecting the measured 

deviation between predicted and actual pickup locations. 
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Figure 5: Error Visualization Diagram. This diagram shows a top-down view of the 

conveyor belt, with the part movement and predicted/actual locations. The error, or 

difference between these two locations, is depicted as well. 

 

4.1.1 Direct Kinematic Method 

The Direct Kinematic Method calculated interception time based on the robot’s 

vertical descent to the pickup plane, assuming trapezoidal motion and constant part 

velocity. This method, being the simplest of the three, served as a baseline model and did 

not take into account the robot’s full diagonal travel path or its multi-axis motion profile. 

Instead, the time to intercept was computed solely from the known scanning height and the 

robot’s speed and acceleration limits, using a vertical displacement equation. 

In terms of x direction positional accuracy, the Direct Kinematic Method produced 

an average error of 40.11 mm. The minimum error recorded across trials was 31.90 mm, 

while the maximum reached 48.00 mm, indicating considerable variability in prediction 

accuracy. The high error values in x suggest that relying solely on vertical descent time for 

predictive modeling is insufficient for accurate interception, particularly because the 

horizontal motion component of the robot’s trajectory is ignored. The y direction positional 
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accuracy, however, was better. The average error in y was 30.14 mm, with recorded errors 

ranging from 20.80 mm to 41.00 mm. 

Rotationally, the system achieved an average angular error of 6.77° using this 

method. The lowest recorded error was 5.40°, while the maximum reached 8.10°. Although 

this method did not include any explicit strategy for minimizing rotational error beyond 

standard vision-based alignment, the rotational results were reasonably consistent, albeit 

slightly higher than those recorded for the Hypotenuse Method. 

The average error across x and y only, excluding rotational error, was 35.13 mm. 

Despite its simplicity and limitations, the method was able to successfully complete all ten 

trials without failure and maintained a consistent performance profile, with an average 

deviation of 2.27 mm. 

 

4.1.2 Hypotenuse-Based Trajectory Method 

The Hypotenuse Method estimated interception time by considering the full 

diagonal travel path between the scanning height and the predicted pickup location. This 

method modeled the motion along the hypotenuse of a right triangle formed between the 

vertical scanning offset and the planar distance from the camera to the part. By using the 

robot’s velocity and acceleration parameters in conjunction with the predicted position, the 

required time to intercept was calculated using a trapezoidal motion profile. 

This method significantly improved positional accuracy compared to the Direct 

Kinematic Method. The average error in the x direction was 14.57 mm, with values ranging 

from 6.40 mm to 22.90 mm. In the y direction, the average error was 31.46 mm, with a 

minimum of 26.60 mm and a maximum of 37.60 mm. While the y error remained relatively 
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high, the x error was substantially reduced, suggesting that the Hypotenuse Method’s 

improved prediction model more accurately accounted for the robot’s actual motion 

characteristics. 

The average angular error was 5.91°, with a minimum of 5.10° and a maximum of 

6.60°, making it the best-performing method rotationally. The system maintained 

consistent alignment performance without requiring separate rotational modeling or 

compensation. The average positional error in the x and y directions was 23.01 mm, making 

this method more accurate than the previous. All ten trials were completed successfully, 

and the results showed a relatively tight spread, with an average deviation of 2.07 mm. 

 

4.1.3 Ambush Method 

The Ambush Method used a static interception time set slightly shorter than the 

average travel time predicted by the Hypotenuse Method. Instead of calculating a precise 

moment of interception, this method relied on triggering the pickup action earlier than 

expected, allowing the robot to “wait” for the part to arrive. This approach avoided motion 

prediction altogether and instead prioritized timing safety, which is sometimes favored in 

high-speed systems with variable part trajectories. 

The positional accuracy in the x direction was lower than the other methods, with 

an average error of 43.28 mm and a range between 29.30 mm and 58.80 mm. The y 

direction error was lower than x, with an average of 21.12 mm and a range from 14.30 mm 

to 27.90 mm. This imbalance indicates that the method may have performed better at 

estimating lateral position due to timing alignment but suffered along the robot’s primary 

movement axis. 
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The average angular error was 6.56°, with a minimum of 5.90° and a maximum of 

7.30°, comparable to the other two methods. Although the system did not rely on real-time 

motion modeling, the part’s consistent placement and conveyor speed helped maintain 

rotational alignment within a tolerable range. 

The average positional error across x and y was 32.20 mm, placing this method 

between the Hypotenuse and Direct Kinematic methods in terms of accuracy. All ten trials 

were successful, and the average deviation was 3.24 mm, slightly higher than the other 

methods and reflecting a broader spread in performance. 

 

4.1.4 Comparative Summary of Pickup Methods 

To allow a consolidated view of each method's performance, Table 6 and Fig. 6. 

summarize the average error values recorded across the three tested predictive strategies. 

In Table 6 and Fig. 6., the Average data represents the average of the x and y positional 

errors only. Rotational error (u) is excluded from this calculation to ensure consistent unit 

handling and reflect pure displacement accuracy. Detection rate indicates how many of the 

ten trials resulted in successful part identification by the vision system. While detection 

was successful in all trials for pickup method testing, later experiments occasionally 

experienced detection failures. 

 

Table 6: Component Error and Detection 

Method Average X 

Error (mm) 

Average Y 

Error (mm) 

Average U 

Error (º) 

Average 

(mm) 

Detection 

Rate 

Kinematic 40.11 30.14 6.77 35.13 10/10 

Hypotenuse 14.57 31.46 5.91 23.01 10/10 

Ambush 43.28 21.12 6.56 32.20 10/10 
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Figure 6: Displacement Inaccuracy vs. Pickup Method 

 

The data demonstrates clear trade-offs between the methods. The Hypotenuse 

Method offered the best accuracy in the x direction and rotational alignment but performed 

the worst in y direction positioning. The Ambush Method achieved the best average y 

accuracy and maintained a moderate x error, though it suffered in rotational precision. The 

Direct Kinematic Method, although the least sophisticated and most limited in terms of 

predictive modeling, offered reasonably balanced performance in y and u, but exhibited the 

largest x direction error. All three methods could complete all ten trials without failure, 

demonstrating a fundamental level of robustness and stability under consistent 

experimental conditions. However, the variation in performance metrics reveals that the 
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choice of predictive method significantly influences both accuracy and consistency, 

depending on the axis of interest and the specific goals of the application. 

Beyond just the average error values, the standard deviation of each error 

component adds an important dimension to the system’s characterization—namely, how 

reliably each method performs from trial to trial. A method with a low average error but 

high variability may not be desirable in situations requiring consistent output. Conversely, 

a method with moderate average error but tight consistency might be better suited for 

operations where predictability and repeatability are critical. 

The Direct Kinematic Method exhibited the lowest standard deviation in x error, 

measured at 3.06 mm. This is notable given that its average x error was the highest of the 

three methods, indicating that while it consistently missed the target position in the x-

direction, it did so in a predictable manner. Additionally, its y error standard deviation was 

3.32 mm, which falls within a reasonable range, and its u error standard deviation of 0.42° 

was the lowest among the methods. This indicates that the method was particularly strong 

in repeatable rotational positioning, which is impressive considering that it lacked any 

sophisticated rotational optimization. 

The Hypotenuse Method, while the most accurate overall in terms of average x and 

u errors, showed slightly higher variability in its x direction results with a standard 

deviation of 4.35 mm. Still, this value reflects consistent x position predictions across all 

trials. More impressively, this method demonstrated the lowest y error standard deviation 

at 1.03 mm, revealing an ability to maintain extremely tight lateral positioning accuracy 

even though its average y-error was higher than desired. In rotational accuracy, the method 

also performed well, with a u error standard deviation of 0.84°, confirming relatively stable 
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orientation alignment throughout the testing sequence. These characteristics make the 

Hypotenuse Method not only highly accurate but also consistent in two of the three tested 

dimensions. 

The Ambush Method demonstrated mixed results. It had a moderate x error 

standard deviation of 3.41 mm, which is better than the Hypotenuse Method but slightly 

worse than the Direct Kinematic Method. However, its y error standard deviation was the 

highest at 4.90 mm, suggesting that its excellent average y accuracy (only 0.63 mm) came 

with a trade-off in trial-to-trial repeatability. This method also showed the highest standard 

deviation in u, at 1.41°, reflecting greater inconsistency in achieving precise gripper 

orientation during the pickup. 

Together, these standard deviation metrics offer a more comprehensive view of how 

each method performs—not only in terms of hitting the target on average, but also how 

reliably that performance is repeated across multiple trials. The Direct Kinematic Method 

stands out for its consistent but misaligned x and u predictions. The Hypotenuse Method 

provides strong all-around consistency, especially in lateral and rotational dimensions, with 

some systematic offset in y. The Ambush Method, while simple and strong in average y 

performance, introduces more unpredictability, particularly in rotational alignment. 
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Figure 7: Normalized Error for the Pickup Methods 

 

 

In addition to evaluating each individual axis, a normalized error analysis was 

performed to enable a unitless comparison across all three motion components, x, y, and 

rotational error (u). Each error value was normalized by dividing it by the maximum 

observed error for that axis across all three methods. The normalized x, y, and u values 

were then averaged to yield a single composite score between 0 and 1 for each method, 

where lower values represent better overall performance.  

As shown in Fig. 7., the Hypotenuse Method achieved the lowest normalized error 

at 0.7368, followed by the Ambush Method at 0.8801, and the Direct Kinematic Method 

at 0.9616. These results reinforce the earlier findings that the Hypotenuse Method offers 

the most balanced and consistently accurate performance when considering all three axes 

of positioning.  



52 

4.2 Comparison of System Accuracy to Industry Standards 

To evaluate the viability of a vision-guided, single-camera robotic system in a 

dynamic pick-and-place setting, the accuracy data collected through experimentation must 

be analyzed in the context of established industry standards. This section compares the 

system’s performance across its three primary pickup configurations—focusing on 

positional accuracy in the x and y directions, as well as rotational accuracy—against 

commonly cited benchmarks for commercial robotic arms used in similar pick-and-place 

tasks. 

In high-performance industrial systems employing external sensor networks and 

custom calibration routines, average positional accuracy in planar x-y space is often 

maintained within ±1 mm to ±5 mm under ideal conditions. For rotational accuracy, these 

systems typically demonstrate deviations of less than ±1° in U-axis orientation when 

operating in structured environments with high-resolution 3D cameras or external feedback 

systems [1], [2]. 

By contrast, the simplified system presented in this study used only a single end-

effector-mounted camera without external sensing, calibration grids, or 3D feedback. 

Under these constraints, the most accurate configuration tested—using the Hypotenuse 

Method—produced an average positional error of 14.57 mm in the X-direction and 31.46 

mm in the Y-direction. The rotational error for this configuration was 5.91°. 

These results represent a clear deviation from industry best-in-class standards. 

Specifically, the x direction error exceeds the upper threshold of industry-grade planar 

accuracy by nearly 10 mm. The y direction error is even more substantial, overshooting the 

±5 mm threshold by more than 26 mm. In rotational alignment, the system’s 5.91° average 



53 

deviation is considerably larger than the sub-degree tolerance generally expected in 

precision-driven tasks. This indicates that while the system can effectively track and 

intercept moving parts, it lacks the fine-grained accuracy necessary for ultra-precise 

applications such as electronics assembly or high-speed sorting where part misalignment 

of even a few millimeters can cause a failure in downstream operations. 

Still, when placed in the context of mid-tier industrial systems or low-cost 

automation setups, these figures are not without merit. For example, some commercially 

available collaborative robots intended for flexible assembly lines advertise positional 

repeatability in the range of ±0.1 mm to ±1 mm, but these numbers are often quoted under 

static conditions without real-time vision tracking or dynamic part movement. When 

dynamic factors are introduced—such as part velocity, single-camera tracking delays, and 

robotic motion lag—systems operating with positional errors between 10 mm and 30 mm 

may still be considered viable for operations where exact placement is not critical, such as 

bin picking, loose sorting, or basic part transfer [2], [8]. 

When comparing all three methods, the Direct Kinematic Method had an average x 

error of 40.11 mm, a y error of 30.14 mm, and a u error of 6.77°. The Ambush Method 

produced a somewhat more balanced profile: an x error of 43.28 mm, a y error of 21.12 

mm, and a u error of 6.56°. Based on the combined average positional error (x and y), the 

Direct Kinematic Method had a total error of 35.13 mm, the Ambush Method measured 

32.20 mm, and the Hypotenuse Method achieved the lowest at 23.01 mm. 

To further support this comparison, a normalized error metric was also applied to 

account for differences in units across x, y, and u axes. The Hypotenuse Method again 
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performed best, with the lowest normalized error of 0.7368, reinforcing its advantage as 

the most consistently accurate configuration overall. 

These results reveal that while none of the methods met the stringent thresholds of 

high-end industrial accuracy, they do exhibit operational viability under less demanding 

conditions. 

Rotationally, the system underperformed relative to industry standards in every 

configuration. With u errors consistently ranging between 5.91° and 6.77°, the gap remains 

substantial when compared to the <1° angular tolerance expected in high-precision 

orientation tasks. The best result—5.91° from the Hypotenuse Method—still falls well 

outside the range required for many modern robotic applications that demand strict 

alignment of components. 

While raw positional accuracy was the central metric under review, it is important 

to acknowledge that high standard deviation in any method would imply greater 

unpredictability in the system’s real-world performance. For instance, although the 

Hypotenuse Method had the best average error values overall, its relatively modest 

standard deviations—4.35 mm in x and 0.84° in u—suggest consistent and reliable 

performance within those boundaries. By contrast, the Direct Kinematic and Ambush 

Methods exhibited higher standard deviations in x, making them less predictable even in 

scenarios where their mean accuracy might seem acceptable. 

In summary, the results demonstrate that under ideal conditions, the system is 

capable of moderately consistent performance in loosely constrained scenarios. In practical 

terms, this could translate to successful deployment in small-scale operations where 

placement precision is less critical—such as sorting similarly sized objects, removing parts 
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from conveyor belts for quality inspection, or assisting human operators in semi-structured 

environments [8], [3], [4]. However, the clear margin by which these results fall short of 

industrial standards reaffirms that this type of minimalist single-camera system may be best 

suited for low-cost, low-precision automation environments. Table 7 summarizes the 

comparison between the best results achieved in this study and typical industry standards, 

[1], [2], [8].  

 

 

 

Table 7: Standards Comparison 

Metric Best Result Industry Standard Comparison 

X Error 14.57 mm 5 mm ~2.7x higher 

Y Error 21.12 mm 5 mm Within range 

Rotational Error 5.91º 1º ~5x higher 

 

 

4.3 Practical Limitations Identified 

This section addresses the third primary research objective: to identify practical 

limitations inherent to a vision-based robotic system utilizing a single, end-mounted 

camera. Each experimental variable—scanning height, conveyor belt speed, velocity 

estimation iteration count, and robot motion constraints—was tested independently while 

holding other system parameters at baseline to isolate and quantify the impact of that 

variable on pickup accuracy. The metrics evaluated in each case were absolute positional 

error in the x and y directions (in millimeters) and rotational error in u (in degrees). These 

errors reflect the deviation between the system’s predicted pickup location and the actual 

location of the part at the time of interception. The practical limitations discussed below 

are based solely on the outcomes of the recorded trials. 



56 

 

4.3.1 Scanning Height 

The scanning height—the vertical distance between the mounted camera and the 

conveyor belt—was varied across six configurations: 650 mm, 680 mm, 710 mm, 740 mm, 

770 mm (baseline), and 800 mm. Changes in scanning height impacted both image 

resolution and the size of the observable field, and consequently influenced the reliability 

of part detection, velocity estimation, and final pickup accuracy. 

At the lowest tested height of 650 mm, the system completed 8 out of 10 trials 

successfully. The x direction error averaged 43.15 mm, with a minimum of 4.04 mm and a 

maximum of 157.49 mm—the highest recorded in any scanning height configuration. Error 

in y was more stable, averaging 4.13 mm with a range from 0 mm to 10.87 mm, while 

rotational error averaged 8.37°, ranging from 6.71° to 9.65°. The average positional error 

in x and y was 23.64 mm. These results indicate inconsistent positional tracking at close 

range. 

At 680 mm, the success rate improved to 10 out of 10, with an average x error of 

38.95 mm and bounds between 18.24 mm and 65.39 mm. y error also increased slightly to 

7.12 mm (range: 0 mm to 23.82 mm), while u error averaged 7.58°, showing improved 

rotational stability over the previous height. The combined x and y error was 23.04 mm. 

Although x error remained relatively high, the narrower rotational range indicated more 

consistent angle alignment. 

The 710 mm height yielded stronger results, again with 10/10 successful trials. 

Error in x fell to an average of 16.45 mm, with a minimum of 0 mm and a maximum of 

29.37 mm. Y error showed a marked improvement, dropping to 0.08 mm on average and 
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remaining within 0.00 mm to 0.30 mm. The error in u averaged 7.42°, ranging from 7.14° 

to 7.65°. The average positional error in x and y was 8.26 mm. These results reflected one 

of the most consistent and accurate sets, particularly in y direction positioning. 

At 740 mm, performance continued to improve across all metrics. The x error 

averaged 21.42 mm, ranging between 0.00 mm and 42.72 mm. y error remained relatively 

low at 2.85 mm, with a range from 0.00 mm to 6.86 mm. The u error averaged 7.12°, with 

a minimum of 4.83° and a maximum of 9.74°. The combined x and y error was 12.13 mm. 

This configuration provided one of the most balanced performances, demonstrating low 

deviation across all parameters. 

The 770 mm scanning height—the baseline configuration—delivered a strong and 

reliable set of results. All 10 trials were successful, and the x error averaged 14.57 mm, 

ranging from 2.60 mm to 26.10 mm. The error in y, however, increased significantly to 

31.46 mm, ranging from 27.00 mm to 33.40 mm, the highest average y error across all 

configurations. Despite the higher y deviation, rotational accuracy improved with a u error 

average of 5.91°, ranging from 2.90° to 8.10°, placing it among the most consistent 

rotational performers. The combined average error in x and y was 23.01 mm. 

At the maximum tested height of 800 mm, only 1 out of 10 trials succeeded. In that 

singular successful trial, the recorded x error was 62.13 mm, y error was 8.74 mm, and u 

error was 7.11°. The 90% failure rate at this height clearly illustrates the system’s practical 

detection limits when image resolution falls too low to reliably identify the part’s profile. 

This marked drop in success strongly suggests the highest viable scanning height lies below 

800 mm. The average positional error in x and y for the successful trial was 35.44 mm. 
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The standard deviation values provide additional insight into the variability of each 

configuration. The highest x direction variability occurred at 650 mm, with a standard 

deviation of 4.04 mm, despite its poor average accuracy. In contrast, 770 mm showed the 

most stable x error at 2.18 mm, highlighting consistency despite increased y error. For y 

error, the 770 mm configuration showed the greatest variability with a standard deviation 

of 1.03 mm, while the 710 mm configuration displayed near-perfect stability with a y 

standard deviation of just 0.06 mm. U error was most consistent at 650 mm (0.42°) and 

least consistent at 740 mm (3.42°). These patterns reflect how scanning height adjustments 

affected not only average accuracy but also the repeatability of the system’s performance 

across trials. Figure 8 summarizes the observed displacement inaccuracies across all 

scanning height configurations tested.  

 

 

Figure 8: Displacement Inaccuracy vs. Scanning Height 
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To better evaluate the relative accuracy of each scanning height across both spatial 

and rotational axes, a normalized error analysis was performed. This method compensates 

for differences in unit scale between displacement (mm) and rotation (degrees) by 

normalizing each error axis relative to the maximum observed value and averaging the 

results. The outcome is a unitless score between 0 and 1, where lower values indicate better 

overall performance. 

As shown in Fig. 9., the lowest normalized error occurred at 710 mm (0.3845), 

followed closely by 740 mm (0.4288), reinforcing earlier conclusions that these heights 

offered the most balanced and consistent performance. The highest normalized error was 

observed at 800 mm (0.7091), confirming the poor effectiveness at extreme scanning 

distances. Interestingly, the baseline configuration at 770 mm yielded a relatively high 

normalized error of 0.6471 despite its strong rotational accuracy, due to its large y-direction 

deviation.  

 
 

Figure 9: Normalized Error vs. Scanning Height 
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4.3.2 Conveyor Belt Speed 

The effect of part velocity on system performance was assessed by testing three 

conveyor belt speeds using the system’s dial control settings: 0.75, 1.0 (baseline), and 1.5. 

These settings were calibrated to represent linear part speeds of approximately 32 mm/s, 

50 mm/s, and 95 mm/s, respectively. 

At the lowest speed (0.75 setting, ~32 mm/s), the average error in x was 37.75 mm, 

with a minimum of 7.14 mm and a maximum of 96.96 mm. Y error remained relatively 

low at 2.37 mm, with a range from 0 mm to 10.59 mm, while u error averaged 5.43°, 

ranging from 3.00° to 7.21°. The combined average positional error in x and y was 20.06 

mm. Despite the slow movement allowing more time for prediction, positional estimation 

became somewhat inconsistent, particularly in the x direction. 

At the 1.0 speed setting (~50 mm/s)—used as the baseline for most experiments—

the average x error dropped to 14.57 mm, while y error increased to 31.46 mm. The 

rotational error averaged 5.91°, with bounds between 2.90° and 8.10°. The combined x and 

y error was 23.01 mm. This configuration provided a relatively strong balance between 

detection and robot reaction time and was the most stable across repeated trials, with all 10 

being successful. 

At the highest tested speed of 1.5 (~95 mm/s), the success rate dropped to 4 out of 

10 trials. In those four successful cases, the average x error was 25.49 mm (range: 1.48 mm 

to 59.45 mm), while y error averaged 14.60 mm and u error was 7.82°, with angular errors 

ranging from 7.33° to 8.55°. The average positional error was 20.04 mm. The failure in six 

of ten trials was due to the part exiting the camera frame too quickly, preventing full 
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tracking and velocity estimation. Even in the successful trials, reduced data collection time 

introduced moderate variability in all axes. 

Standard deviation analysis reflects these patterns in consistency across different 

speeds. At the lowest speed of 32 mm/s, the standard deviation for x error was 12.96 mm, 

for y error was 1.91 mm, and for u error was 0.67°. The baseline speed of 50 mm/s had the 

lowest variability in x (4.35 mm) and u (0.84°), but the y error variability was slightly 

higher at 1.03 mm. At the highest speed of 95 mm/s, standard deviation increased in every 

category: 12.34 mm in x, 3.23 mm in y, and 3.23° in u. This reflects a marked increase in 

trial-to-trial error dispersion at higher conveyor velocities. Figure 10 shows the values for 

conveyor speed against displacement inaccuracies.  

 

 

Figure 10: Displacement Inaccuracy vs. Conveyor Speed 
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A normalized error analysis was performed for conveyor belt speed to account for 

cross-dimensional variability and to better visualize combined system performance. This 

method normalizes each axis by its maximum observed error and then averages the values, 

yielding a unitless score between 0 and 1. 

As seen in Fig. 11., normalized error increased as conveyor speed increased, 

indicating a decline in overall system coordination and reliability. At 32 mm/s, the 

normalized error was 0.5899, the lowest among all speeds. The baseline speed of 50 mm/s 

produced the highest normalized error at 0.7142, driven largely by the high y-direction 

inaccuracy. Interestingly, while the average positional error at 95 mm/s was not drastically 

higher than the others, its normalized error of 0.7131 reveals a performance closer to the 

baseline configuration than initially assumed. This discrepancy underscores how 

normalized metrics can uncover subtleties in multi-dimensional behavior not immediately 

apparent in unnormalized averages. 

 

 
 

Figure 11: Normalized Error vs. Conveyor Speed 
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4.3.3 Velocity Estimation Iterations 

To assess the influence of data sampling frequency on predictive accuracy, the 

number of iterations used to estimate part velocity was varied from 8 to 14. Each iteration 

captured a new part position, which was used to compute an updated velocity average. 

At 8 iterations, the system produced an average x error of 15.29 mm, with values 

ranging from 3.85 mm to 34.67 mm. The average y error increased significantly to 33.47 

mm (range: 26.84 mm to 43.90 mm), while u error was 7.05°, ranging from 6.65° to 7.71°. 

These results demonstrated improved x performance but decreased y stability. At 9 

iterations, the system achieved an x error of 29.71 mm, y error of 30.90 mm, and u error of 

6.62°. The respective error ranges were 0 mm to 54.32 mm in x, 21.60 mm to 39.08 mm in 

y, and 3.87° to 9.02° in u. The 10-iteration setup improved average x error to 14.57 mm, 

with a range from 2.60 mm to 26.10 mm. Y error increased slightly to 31.46 mm, while u 

error improved to 5.91°, ranging from 2.90° to 8.10°. This configuration provided one of 

the most balanced trade-offs across all axes. 

At 11 iterations, results remained stable with an average x error of 18.61 mm (range: 

0.02 mm to 46.56 mm), y error of 30.20 mm (range: 15.54 mm to 48.92 mm), and u error 

of 6.64°, ranging from 3.84° to 10.85°. By 12 iterations, average x error decreased slightly 

to 13.02 mm, y error remained stable at 30.88 mm, and u error was 6.45°, with performance 

beginning to plateau. At the maximum tested count of 14 iterations, the system produced 

an x error of 15.52 mm (range: 0 mm to 42.46 mm), y error of 6.22 mm (range: 0 mm to 

42.46 mm), and u error of 6.56°, reflecting a drop in accuracy. 

The standard deviation values offer insight into the consistency of each iteration 

setting. At 8 iterations, the x error deviation dropped to 2.58 mm, but y error deviation rose 



64 

to 3.12 mm, indicating greater inconsistency. At 9 iterations, standard deviation rose to 

3.90 mm in x and 3.20 mm in y, marking a return to broader trial-to-trial variability. 

At 10 iterations, x error standard deviation was 2.07 mm, indicating the most 

consistent x predictions across trials. Deviations in y and u were also minimized at 1.03 

mm and 0.84°, respectively, suggesting this was the most stable configuration overall. As 

iterations increased beyond 10, standard deviations began to climb again. At 11 iterations, 

the x error deviation was 4.62 mm, y error deviation was 4.68 mm, and u error deviation 

peaked at 1.05°. Similar trends held at 12 and 14 iterations. These results reinforce the 

notion that while higher iteration counts can smooth velocity estimates, they also introduce 

processing delays and may reduce responsiveness to rapid motion changes. 

A trendline analysis was applied to the average positional error across iterations to 

better visualize the relationship between sampling frequency and accuracy. The resulting 

exponential decay curve, shown in Fig. 12., followed the model y = 33.58e-0.11x, with a 

coefficient of determination R2 = 0.5152. While this R2 value indicates only moderate 

correlation, it does support the observed trend that increasing the number of velocity 

iterations generally improves positional accuracy, albeit with diminishing returns after a 

certain point.  
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Figure 12: Displacement Inaccuracy vs. Iteration Count. Trendline for the Average 

series is depicted as well, with the equation and R2 value included. 

 

 

To further evaluate the impact of iteration count on overall accuracy, normalized 

error values were calculated using axis-wise max normalization. This method accounts for 

differences in unit scale across x, y, and u dimensions, enabling a more unified metric for 

comparison. The results show a distinct pattern: the normalized error peaked at iteration 

count 9 with a value of 1.0000, indicating the poorest overall performance in terms of 

combined displacement and rotational inaccuracy. Conversely, the lowest normalized error 

occurred at 14 iterations, with a value of 0.5821, highlighting a significant gain in total 

system accuracy. Notably, although the raw average error values did not always follow a 

strict monotonic trend, the normalized error reveals that iteration counts above 10 generally 

yielded better overall accuracy across all axes. These results emphasize the importance of 

considering normalized error alongside raw values to uncover underlying performance 
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improvements that may otherwise be obscured by unit disparities or axis-specific 

variability. Figure 13 illustrates this relationship, plotting normalized error against iteration 

count. 

 

 
 

Figure 13: Normalized Error vs. Iteration Count 

 

 

4.3.4 Robot Motion Constraints 

To assess the effect of physical robot responsiveness, tests were conducted by 

adjusting both maximum speed and acceleration simultaneously. Three configurations 

were tested: 500 mm/s and 500 mm/s², 1000 mm/s and 1000 mm/s² (baseline), and 1500 

mm/s and 1500 mm/s². 

At the lowest setting (500 mm/s, 500 mm/s²), 9 out of 10 trials succeeded. The 

average x error was 17.55 mm, with values ranging from 0 mm to 30.74 mm. The y error 

was low at 0.13 mm, ranging between 0 mm and 0.64 mm. Rotational error averaged 6.02°, 



67 

with a range of 5.72° to 6.44°. The total average error for this configuration was 8.84 mm. 

The single failure trial was due to the robot’s inability to reach the pickup point in time, as 

the reduced speed and acceleration limited its range and responsiveness. 

At the baseline setting (1000 mm/s, 1000 mm/s²), the robot successfully completed 

all ten trials. The average x error was 14.57 mm, ranging from 2.60 mm to 26.10 mm. Y 

error increased to 31.46 mm, with values between 27 mm and 33.4 mm. U error averaged 

5.91°, ranging from 2.90° to 8.10°. The total average error for this setting rose to 23.01 

mm. This configuration represented a strong compromise between mechanical speed and 

positional stability, maintaining high success and acceptable accuracy across all axes. 

At the highest setting (1500 mm/s, 1500 mm/s²), the average x error rose to 44.61 

mm (range: 29.87 mm to 52.6 mm). However, y error improved dramatically to 6.15 mm, 

with a minimum of 0 mm and a maximum of 10.23 mm. Rotational accuracy also improved 

slightly, with an average u error of 5.59° and a range between 3.43° and 8.85°. Despite 

improved y and u performance, the x error increase resulted in a total average error of 25.38 

mm. This configuration demonstrated that while faster motion limits reduced y and u error, 

they introduced increased error in the x direction. 

Standard deviation results further support the observed trends in variability across 

the three motion settings. At the lowest speed and acceleration (500 mm/s²), x error 

standard deviation was 5.92 mm—the highest among the three—indicating unstable 

horizontal positioning across trials. However, this setting maintained the lowest variability 

in both y and u axes, with standard deviations of 0.143 mm and 0.137°, respectively. The 

baseline configuration (1000 mm/s²) demonstrated moderate consistency in the x error, 

with a standard deviation of 4.7 mm, lower than the slowest setting, though not as 
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consistent as the highest setting. The y error variability increased significantly to 1.11 mm, 

while u error standard deviation was 0.90°, reflecting broader trial-to-trial shifts, 

particularly in y. At the highest motion setting (1500 mm/s²), the x error standard deviation 

decreased to 3.76 mm, while the y error standard deviation dropped sharply to 1.93 mm. 

The u error had moderate rotational consistency with a low standard deviation of 1.04°, 

indicating improved consistency in rotational alignment despite faster robot movements. 

These values are plotted in Fig. 14. 

 

 

Figure 14: Displacement Inaccuracy vs. Robot Motion Limits  

 

In addition to raw error values, normalized error analysis provides further insight 

into overall configuration performance, graphed in Fig. 15. By applying axis-wise max 

normalization, the composite error in x, y, and u was scaled to allow direct comparison 
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across configurations. The 500 mm/s setting achieved the lowest normalized error at 

0.4658, suggesting strong combined accuracy despite minor increases in trial-to-trial x 

variation. The baseline configuration of 1000 mm/s exhibited the highest normalized error 

at 0.7698, largely driven by the significant increase in y error. Interestingly, the 1500 mm/s 

setting resulted in a slightly improved normalized error of 0.7080 compared to the baseline, 

driven by much lower y error despite the sharp rise in x. 

 

 

 

 
 

Figure 15: Normalized Error vs. Robot Motion Limits 

 

 

4.3.5 Summary of Failed Attempts 

While the majority of trials across all test scenarios were successful, several 

configurations experienced partial or total failure in achieving accurate pickups. These 

failures occurred in cases where either the robot was unable to reach the predicted position 

in time, or the part exited the field of view before velocity estimation and interception could 
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be completed. This section summarizes the test conditions under which failures occurred, 

including the frequency and potential mechanical limitations observed. 

The most severe failures occurred at the maximum scanning height of 800 mm, 

where 9 out of 10 trials failed. At this height, the camera’s reduced resolution and 

diminished ability to consistently identify the part profile led to frequent tracking errors. 

The single successful trial yielded a relatively high x error of 62.13 mm. Detection failure 

at this height was likely due to the part’s small visual footprint in the image frame, which 

increased the chance of mismatch with the stored template. At the 650 mm scanning height, 

although 8 out of 10 trials were successful, the two failures stemmed from abrupt part 

reorientation at close range, which exceeded the field of view before the camera could 

compensate. These failures suggest a visibility issue, where the limited viewing angle 

restricted the system’s ability to gather sufficient data for velocity estimation, resulting in 

either inaccurate predictions or complete tracking loss. 

Failures also occurred while testing the effects of conveyor belt speed. At the 1.5 

dial setting (95 mm/s), the system completed only 4 out of 10 trials successfully. The 

primary reason for failure was the rapid movement of the part, which often caused it to exit 

the frame before sufficient data was collected. In many of these cases, the camera failed to 

capture enough high-quality images before the part left the observable area, preventing a 

complete velocity profile from being formed. This speed exceeded the practical capture 

rate of the system’s camera, introducing both motion blur and data gaps in the tracking 

phase. 

Additionally, at the 500 mm/s and 500 mm/s² motion limit setting, 1 out of 10 trials 

failed due to the robot’s inability to reach the predicted interception point in time. The 
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reduced acceleration caused a significant delay in movement initiation, which—although 

not affecting y or u accuracy—prevented the gripper from arriving at the correct x position 

fast enough. In this trial, the part moved out of reach by the time the robot initiated the 

descent phase. 

In total, failures were most closely associated with configurations that introduced 

excessive uncertainty into either the part’s estimated trajectory or the robot’s ability to 

respond. Specifically, high conveyor speeds and high scanning heights posed the greatest 

challenges to the system’s vision tracking reliability, while low motion constraints 

primarily limited the robot’s mechanical responsiveness. Across all failure cases, the 

common thread was insufficient coordination between visual detection and mechanical 

actuation, preventing timely and accurate interception. 

 

4.4 Summary of Key Findings 

This section consolidates the major outcomes presented throughout Chapter IV, 

highlighting recurring patterns, relative performance across configurations, and 

statistically notable accuracy trends. The purpose is to provide a clear overview of the 

experimental results obtained without analysis or interpretation. 

Among the three predictive strategies evaluated, the Hypotenuse Method 

consistently yielded the highest accuracy across most measured metrics. It achieved the 

lowest average x error of 14.57 mm, a moderate y error of 31.46 mm, and a rotational error 

of 5.91°, all while maintaining a 100% trial success rate. The Direct Kinematic Method 

averaged 40.11 mm in the x error, with stronger performance in y and rotational alignment. 

The Ambush Method produced intermediate x error levels of 43.28 mm, the best y error at 



72 

21.12 mm, and the second highest u error at 6.56°, indicating mixed but successful results 

across axes. 

Optimal scanning height was found between 710 mm and 770 mm, with these 

configurations delivering the best balance of positional and rotational accuracy. At 770 

mm, the system achieved one of the lowest x errors (14.57 mm) and strong rotational 

performance (5.91°), though it also recorded the highest average y error. Scanning heights 

of 650 mm and 800 mm demonstrated the most instability. At 650 mm, x error averaged 

43.15 mm, and the u error was 8.37°, while at 800 mm, only 1 of 10 trials succeeded. These 

results reflect a strong dependency on maintaining a camera height within a functional 

detection window. 

The baseline conveyor speed of 50 mm/s (setting 1.0) produced the most stable 

results, with an average x error of 14.57 mm, y error of 31.46 mm, and u error of 5.91°. At 

the slower speed of 32 mm/s (setting 0.75), x error increased significantly to 37.75 mm, 

with a similar trend in rotational error (5.43°). At the highest tested speed of 95 mm/s 

(setting 1.5), the success rate dropped to 4 out of 10 trials, and x error averaged 25.49 mm, 

y error 14.60 mm, and u error 7.82°, reflecting a degradation in accuracy with speed 

increases. 

Velocity estimation iteration counts between 9 and 12 yielded the most consistent 

accuracy. At 10 iterations, the system produced an x error of 14.57 mm, y error of 31.46 

mm, and rotational alignment of 5.91°. At the maximum tested iteration count of 14, the 

system achieved an x error of 15.52 mm, y error of 6.22 mm, and u error of 6.56°, reflecting 

improved y performance at the cost of slight increases elsewhere. Additionally, a trendline 

analysis of iteration count versus average error revealed an exponential decay trend y = 
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33.58e-0.11x with an R2 value of 0.5152, indicating moderate correlation between increased 

sampling frequency and improved accuracy. 

Motion constraints significantly influenced performance. The baseline 

configuration (1000 mm/s velocity and 1000 mm/s² acceleration) provided balanced 

results, with an x error of 14.57 mm, y error of 31.46 mm, and u error of 5.91°. Increasing 

speed and acceleration to 1500 mm/s and mm/s² reduced y error to 6.15 mm and u error to 

5.59°, but increased x error to 44.61 mm. Conversely, reducing motion parameters to 500 

mm/s and 500 mm/s² improved y error to 0.13 mm, while increasing x error to 17.55 mm 

and u error to 6.02°. 

Failures were most frequently observed at high scanning heights and fast conveyor 

speeds, where vision detection and part tracking became unreliable. The system failed in 9 

of 10 trials at 800 mm scanning height and 6 of 10 trials at 95 mm/s conveyor speed. A 

single failure occurred during testing with low motion constraints (500 mm/s and mm/s²), 

where the robot was physically unable to reach the part before it moved out of reach. No 

complete failures occurred during iteration count tests, although lower iteration counts 

exhibited more extreme variability in x error, including deviations exceeding 149 mm. 

In addition to average errors, standard deviation values offer insight into the 

system’s precision and consistency across repeated trials. The Direct Kinematic Method 

produced the second lowest standard deviation in x error (3.06 mm), while the Hypotenuse 

Method showed greater consistency in u error (0.84°) and moderate variation in x and y. 

The Ambush Method had the highest standard deviation in y error (4.90 mm), as well as 

the highest standard deviation in rotational alignment (1.41°). For other variables, the 

lowest standard deviation in u error occurred at 8 iterations (0.18°), and the highest x error 
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variability occurred at 650 mm scanning height (81.67 mm). These trends reveal where the 

system achieved not just accuracy, but repeatability. 

In addition to traditional raw error analysis, normalized error values were calculated 

using axis-wise maximum normalization to unify positional and rotational inaccuracies 

into a common performance metric. These normalized results revealed deeper performance 

distinctions, highlighting that the 14-iteration configuration produced the lowest overall 

normalized error (0.5821), while faster conveyor speeds and extreme scanning heights 

generally led to worse normalized performance. Normalized error analysis proved 

particularly valuable in cases where raw x, y, and u values shifted independently, providing 

a single metric that better captures true overall system performance across different 

conditions. 
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Chapter V: Conclusion 

5.0 Introduction 

This chapter consolidates the primary outcomes of the study, reflecting on 

experimental observations, performance trends, and key takeaways from testing the vision-

guided pick-and-place robotic system. It is organized to provide both a concise summary 

of results and a broader interpretation of what those results suggest in practical and 

technical contexts. Section 5.1 offers a recap of major findings across all variables, 

including pickup method, scanning height, conveyor speed, iteration count, and robot 

motion constraints. It summarizes which configurations performed best and identifies 

patterns in positional and rotational accuracy, as well as trial success rates. Section 5.2 

presents a deeper discussion and interpretation of the results. Each subsection focuses on a 

specific variable and explains why the observed trends may have occurred. These 

interpretations incorporate insights related to vision system limitations, robot dynamics, 

and environmental factors, connecting the data to broader engineering principles and 

practical implications. Section 5.3 considers how these results relate to system reliability 

and real-world deployment. It discusses system-level behavior beyond raw accuracy—such 

as part detection consistency, success rates, and gripper performance—and reflects on what 

makes this type of vision-guided system viable or limited in different application scenarios. 

Section 5.4 addresses experimental limitations and outlines potential areas for future work. 

This includes improvements to hardware, sensor resolution, image processing algorithms, 

and control logic. It also reflects on the sources of error in the experimental setup and 

proposes adjustments that could enhance system precision, repeatability, or speed in future 

iterations of this work. 
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Finally, Section 5.5 offers concluding remarks on the broader significance and feasibility 

of this research. It reaffirms the core objectives of the project and reflects on its potential 

role in expanding access to industrial automation for smaller-scale manufacturers. 

 

5.1 Summary of Key Results 

The experimental findings revealed clear trends in system performance as each 

major parameter was varied. This section summarizes the most important outcomes across 

pickup strategy, scanning height, conveyor speed, iteration count, and robot motion 

constraints, with emphasis on comparative accuracy and success rate performance. While 

detailed values were provided in Chapter IV, the following overview highlights relative 

strengths and weaknesses of different configurations based on average x and y positional 

error, rotational alignment, and normalized accuracy. 

The Hypotenuse Method yielded the best combined positional accuracy across all 

three tested methods. It achieved an average x error of 14.57 mm and a y error of 31.46 

mm, resulting in a combined average positional error of 23.02 mm. In comparison, the 

Direct Kinematic Method recorded an x error of 40.11 mm and y error of 30.14 mm, for a 

combined average of 35.13 mm, while the Ambush Method showed the best y accuracy at 

21.12 mm but the highest x error at 43.28 mm, resulting in a combined average of 32.20 

mm. These comparisons highlight the Hypotenuse Method’s superiority in minimizing 

error across both axes, achieving a 34% lower average positional error than the next best 

method. 

Optimal performance was achieved within the 710 mm to 770 mm range, with the 

770 mm height (baseline) offering the lowest x error (14.57 mm) and strong rotational 
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performance (5.91°), albeit at the cost of the highest y error (31.46 mm). The 710 mm 

configuration, on the other hand, produced nearly perfect y accuracy (0.08 mm) and a 

moderately higher x error (16.45 mm), yielding a combined positional error of 8.27 mm—

the best overall. Performance deteriorated outside this range, with the 650 mm height 

yielding an average x error of 43.15 mm and 800 mm resulting in only 1 out of 10 

successful trials. This confirms that scanning height must be tuned within a specific 

detection window to balance field of view, resolution, and predictive consistency. 

The baseline speed of 50 mm/s combined a full success rate with solid accuracy, 

producing an x error of 14.57 mm and a y error of 31.46 mm. Slower motion at 32 mm/s 

worsened performance, increasing x error to 37.75 mm and reducing precision despite the 

longer prediction window. At the fastest setting (95 mm/s), the success rate dropped to 4 

out of 10, with an average x error of 25.49 mm and y error of 14.60 mm. Though the 

positional error seemed lower at high speed, the inconsistency and trial failures suggest 

diminished reliability. The baseline speed thus remains the most stable configuration for 

continuous performance. 

Accuracy improved steadily with increasing iteration count, confirming that larger 

sample sizes allowed better velocity estimation. The best performance occurred at 14 

iterations, with the lowest x error (15.52 mm) and a substantially reduced y error (6.22 

mm), resulting in a combined average error of 10.87 mm—the best across all 

configurations. At 10 iterations, x error matched that of 14 iterations (14.57 mm) but y 

error was significantly worse (31.46 mm), producing a combined error of 23.02 mm. This 

validates that although 10 iterations were stable, 14 iterations cut total positional error by 
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over 50%. A fitted exponential decay trendline, y = 33.58e-0.11x with R² = 0.5152, further 

illustrated diminishing gains beyond 12 iterations. 

Changes in speed and acceleration directly impacted positional error. The baseline 

configuration (1000 mm/s, 1000 mm/s²) had a balanced x error of 14.57 mm and y error of 

31.46 mm, for a combined error of 23.02 mm. Increasing the limits to 1500 mm/s and 

mm/s² improved y accuracy dramatically (6.15 mm) but more than tripled x error to 44.61 

mm, yielding the worst combined average of 25.38 mm. Reducing limits to 500 mm/s and 

mm/s² led to the lowest y error (0.128 mm) but an x error of 17.55 mm, producing a 

positional average of 8.84 mm—second only to the best scanning height result. Normalized 

error analysis supported the finding that faster robot movements reduced control in the x-

direction while improving other dimensions, highlighting the need for application-specific 

trade-offs. 

 

5.2 Interpretation and Analysis of Results 

While Section 5.1 provided a condensed summary of key outcomes, the following 

subsections aim to explain why the observed trends occurred by examining the physical, 

mechanical, and logical behaviors underpinning each variable. Each subsection focuses on 

one of the core tested parameters; pickup method, scanning height, conveyor belt speed, 

iteration count, and robot motion limits, and offers reasoning for the system’s performance. 

In some cases, the trends are intuitive and easily explainable, while in others, the reasoning 

is more speculative or remains undetermined. Where appropriate, this section introduces 

original hypotheses based on practical system behavior and engineering reasoning. Key 
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performance metrics referenced here have already been summarized in Section 5.1, 

presented in full in Chapter IV, and detailed comprehensively in the appendix tables.  

 

5.2.1 Pickup Method 

 

Among the three predictive strategies evaluated—Direct Kinematic, Hypotenuse, 

and Ambush—the Hypotenuse Method consistently outperformed the others in terms of 

overall accuracy. Its effectiveness is largely attributable to how it models the physical 

behavior of the robotic system. Unlike the Direct Kinematic Method, which only considers 

the vertical (z-axis) travel distance between the robot’s starting position and the part’s 

expected location, the Hypotenuse Method accounts for the true diagonal path the robot’s 

end effector must follow to reach the pickup point. By factoring in both vertical and 

horizontal displacement, it provides a more realistic estimate of the required motion and 

time needed for interception, aligning more closely with the robot’s actual trajectory and 

dynamic constraints. 

The Direct Kinematic Method, by contrast, assumes the robot moves straight down 

vertically toward the part’s pickup height. This oversimplification fails to account for the 

significant horizontal motion the robot must perform, especially when the part is located 

farther from the centerline of the robot’s home position. As a result, it often underestimates 

the time required for pickup and causes the robot to arrive late or misaligned. While this 

method is computationally simple and can produce consistent rotational alignment due to 

its static orientation assumptions, its disregard for horizontal positioning leads to increased 

error in the x-direction. This was reflected in the average x error, which was more than 

double that of the Hypotenuse Method. 
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The Ambush Method takes a fundamentally different approach. Rather than aiming 

to intercept the part at its predicted future position, it attempts to “ambush” the part by 

traveling to a fixed position ahead of its current trajectory and waiting there to intercept it. 

Although this eliminates the need for continuous time or distance estimation during motion, 

it introduces a critical vulnerability: error propagation. Since the robot moves significantly 

farther from the part’s initial location than the other methods, even small inaccuracies in 

initial velocity or position estimation grow larger as the robot waits for the part to arrive. 

The longer the gap between prediction and pickup, the more these discrepancies 

accumulate—especially in the presence of noisy image processing data or slight 

miscalculations in the part’s speed. This likely explains why the Ambush Method exhibited 

the highest variability in performance across trials, particularly in rotational alignment and 

y-direction placement. 

Moreover, while both the Direct Kinematic and Hypotenuse Methods are 

interception strategies, the Ambush Method relies on anticipation. For a given part speed, 

the Ambush pickup point is typically located farther from the part’s current position than 

the interception methods. This increased distance allows more time for error to accumulate 

between the predicted and actual part position. Additionally, the Ambush Method requires 

precise timing for the gripper’s actuation. Since the robot is already stationed at the pickup 

point, the exact moment when the gripper closes becomes critical. Even minor 

discrepancies in timing—caused by sensor lag, velocity estimation error, or mechanical 

response delays—can result in a failed pickup. As such, the Ambush Method not only 

amplifies spatial error over time but also becomes increasingly sensitive to temporal 
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inaccuracies, making the overall pickup success rate more dependent on part size, gripper 

geometry, and system response precision. 

Normalized error metrics reinforce these trends. While the Hypotenuse Method not 

only yielded the lowest raw x error and strong rotational consistency, it also had the lowest 

normalized combined error, confirming that it offered the most well-rounded and scalable 

performance across all dimensions. These results suggest that in vision-guided robotic 

applications where both timing precision and trajectory accuracy are critical, strategies that 

model real-world motion paths, such as the Hypotenuse Method, are significantly more 

reliable than those based on simplified or anticipatory heuristics. 

 

5.2.2 Scanning Height  

 

Testing revealed a clear performance window between 710 mm and 770 mm for 

the camera’s scanning height, with both configurations producing strong results in 

positional and rotational accuracy. Within this range, the system demonstrated consistently 

low x-direction error, solid part recognition success rates, and stable motion prediction—

indicating that this zone represents an effective balance between field of view and image 

resolution. The best overall results occurred at 770 mm, while 710 mm showed exceptional 

stability in y-direction accuracy. Together, these heights define a practical sweet spot for 

system deployment. Understanding why this window exists requires examining the 

system’s limitations at the extremes. At the upper bound of 800 mm, the camera offered a 

large field of view, but resolution suffered significantly. The resulting image quality was 

often insufficient for the vision system to reliably identify the part’s profile, particularly in 

cases where contrast or lighting varied. Only one of ten trials was successful at this height. 

In the majority of failed cases, the part either went entirely undetected or the system lost 
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track of it mid-sequence—sometimes detecting the first position but failing to maintain 

consistent detection over subsequent iterations. This breakdown in continuity meant that 

the robot could not compute a valid pickup location. At the opposite end, the lowest tested 

height of 650 mm introduced a different set of challenges. While the resolution was highest 

at this distance, the field of view became extremely narrow, leaving little spatial buffer for 

the part to be tracked over time. Parts traversed the camera’s view rapidly, often appearing 

in only a few frames before exiting the field entirely. In addition, small tracking errors were 

amplified by the reduced viewing area. Blurring caused by part motion and the robot’s own 

adjustments further degraded the image quality, making it difficult to capture and process 

clean part profiles. Although the success rate at this height was better than at 800 mm, 

performance was still inconsistent and prone to failure in tightly timed sequences. 

The 710 mm to 770 mm range represents a balance point between these two 

extremes—offering a field of view wide enough to capture the part’s full trajectory without 

significantly sacrificing resolution. Within this optimal window, the average x error was 

18.16 mm and the average y error was 11.13 mm, with all trials at both heights resulting in 

successful pickups. In contrast, outside this window, the system saw a sharp drop in 

accuracy and reliability. At 650 mm and 800 mm, the average x error rose to 43.15 mm 

and 62.13 mm respectively, while y errors increased to 4.13 mm and 8.74 mm. 

Additionally, the 800 mm configuration had only one successful trial out of ten. This 

comparison underscores the system’s sensitivity to camera positioning: even small shifts 

outside the ideal range led to performance declines of over 100% in x-direction error alone. 

These results illustrate that neither resolution nor field of view can be optimized in 

isolation. High resolution with a restricted view leads to truncated tracking, while a wide 
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field with low resolution compromises image clarity. The 710–770 mm range emerged as 

the only region where both variables were simultaneously acceptable—enabling reliable 

tracking and accurate velocity estimation. 

It should be noted that the specific results achieved here are partially influenced by 

the camera’s fixed internal settings and physical mounting position. Future work will 

explore how adjustable camera parameters—such as focus depth, resolution modes, and 

exposure timing—may shift or even broaden the optimal scanning height range. These 

findings reinforce the importance of camera selection and setup as key factors in the overall 

accuracy and reliability of vision-guided robotic systems. 

 

5.2.3 Conveyor Belt Speed 

The effect of conveyor belt speed on system accuracy followed a mildly increasing 

trend in both average and normalized error as part velocity rose, though the overall 

differences across the tested speeds were small. At the lowest tested speed of 32 mm/s, the 

system achieved the lowest average error (20.06 mm) and the lowest normalized error 

(0.5899). At the baseline speed of 50 mm/s, the average error slightly increased to 23.01 

mm, and the normalized error rose to 0.7142. At the fastest tested speed of 95 mm/s, the 

average error decreased slightly to 20.04 mm, though the normalized error remained high 

at 0.7131. This highlights a key distinction between the two metrics: while raw average 

error did not vary dramatically across speeds, normalized error shows a more consistent 

upward trend, suggesting that the system’s proportional error increases slightly as part 

speed increases, even if absolute error remains relatively constant. 
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This trend makes intuitive sense. A faster-moving part becomes more difficult to 

intercept accurately due to reduced reaction time and increased distance between detection 

and pickup. As observed in the ambush method, any deviation in velocity estimation or 

detection timing becomes amplified the farther the part travels before pickup. In the context 

of conveyor belt speed, a faster part inherently requires the robot to intercept further 

downstream, magnifying the effects of any small errors in velocity prediction or gripper 

trajectory. This explains the rise in normalized error, even when average error appears to 

plateau. 

However, the relative stability of average error values across the tested range 

underscores a valuable characteristic of the system: within its operational detection 

window, part velocity does not significantly degrade accuracy. The highest and lowest 

average errors across the three speeds differed by less than 3 mm, and all three 

configurations resulted in successful trial completion rates of 100% (10/10). This 

robustness suggests that the system can be deployed across a moderate range of part speeds 

without necessitating major algorithmic or hardware adjustments. 

It’s important to note, though, that this stability exists only within the functional 

speed limits of the system. During exploratory tests at conveyor speeds above 95 mm/s, 

the system began to fail in recognizing the part consistently due to excessive motion blur 

and insufficient frame coverage. Even using the baseline scanning height of 770 mm, which 

provided a balanced field of view and resolution, the part would exit the frame too quickly 

for reliable multi-frame tracking. This limitation echoes the issues observed at extreme 

scanning heights and underscores that, above a certain threshold, part velocity does impact 
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system performance in a more severe and binary fashion—making it impossible to collect 

reliable pickup data at all. 

Conversely, speeds below 32 mm/s were not tested due to hardware constraints of 

the conveyor belt controller, which could not maintain slower, consistent movement. 

Future work may involve testing sub-32 mm/s speeds using more precise motor controllers 

to determine if ultra-slow motion offers marginal accuracy gains or introduces new issues 

such as part oscillation or image processing stutter. For now, the takeaway is that within 

the range of 32–95 mm/s, the system demonstrates strong velocity tolerance. Accuracy 

does decline gradually as speed increases, particularly when measured proportionally, but 

this effect remains relatively minor until the system’s upper speed limit is surpassed. 

 

5.2.4 Iteration Count 

The number of iterations used to estimate part velocity was found to be a critical 

factor influencing system accuracy. Though earlier results appeared to suggest that 8 

iterations yielded relatively low average error, further analysis reveals that this value is 

likely an outlier. The outlier removal strategy—based on boxplot statistical filtering—may 

have removed extreme deviations from the 8-iteration data, artificially lowering the 

average error by excluding multiple poor predictions. This is likely due to the limited 

sampling available at low iteration counts, where with only a few observed positions, the 

system might randomly “get lucky” in estimating velocity for some trials. As a result, while 

8 iterations appears relatively accurate in raw output, it does not follow the broader trend 

observed in the remaining data and may be misleading as an indicator of consistent 

performance. 
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Beginning at 9 iterations and continuing through 14, a clear and consistent trend 

emerges: increasing the number of velocity estimation iterations generally improves 

overall system accuracy [17]. This trend is particularly evident when examining normalized 

error, which decreases steadily from 0.9541 at 9 iterations to just 0.5459 at 14 iterations. A 

similar improvement is observable in average error as well, with x and y displacement 

inaccuracies falling with higher iteration counts. For example, the average error drops from 

30.31 mm at 9 iterations to just 10.87 mm at 14 iterations. These results reinforce the 

intuitive understanding that additional iterations provide more velocity data points, 

allowing for a more stable and accurate velocity estimate. 

This trend is further supported by the exponential regression model applied to the 

data, which fit an equation of the form: 

Error = 33.58𝑒−0.11𝑥 

with a coefficient of determination R2 = 0.5152, reflecting a reasonably strong fit. 

Extrapolating from this equation provides insight into expected performance beyond the 

tested range. At 25 iterations, the model predicts an average error of approximately 2.15 

mm. By 35 iterations, this falls to 0.71 mm, and by 45 iterations it approaches 0.24 mm. 

While it is unlikely that actual system performance would meet these exact predictions, 

especially given real-world noise and limits in precision, these projections do suggest that 

continued improvement can be expected, albeit at a diminishing rate. Indeed, diminishing 

returns are a central consideration when increasing iteration count. Each additional sample 

contributes progressively less to the improvement of the velocity estimate. Statistically, the 

marginal effect of a new observation on a running average decreases as the sample size 

increases. This effect places a practical upper bound on the benefits gained from additional 
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iterations, even in an ideal system. Moreover, real-world implementation introduces further 

constraints. As mentioned in Chapter IV, the system ignores the first three observed 

velocity values in each test to allow the robot to stabilize and align with the part’s motion. 

Thus, a 14-iteration test includes only 11 active data points in practice. Increasing iteration 

count further would lengthen the system’s scanning duration, pushing the predicted pickup 

point farther down the conveyor. Eventually, this delay could result in the part exiting the 

robot’s reach or even leaving the vision system’s frame entirely before pickup occurs. In 

setups with shorter belts or limited reach, this limitation becomes a critical concern. 

Therefore, while higher iteration counts improve accuracy, they also introduce risks of 

failure due to physical constraints. 

In summary, increasing iteration count improves prediction accuracy due to more 

robust velocity estimation, a trend that aligns with both theoretical reasoning and 

experimental results. However, practical considerations—including processing time, robot 

reach, and diminishing returns—place an upper bound on the number of iterations that can 

be used effectively. This trade-off must be carefully considered in real-world applications, 

especially in time-constrained or spatially limited environments. 

5.2.5 Robot Motion Limits 

 

Among all tested variables, robot motion limits presented some of the least intuitive 

results. One might expect that improving the robot’s mechanical responsiveness would 

enhance pickup accuracy by enabling it to reach the predicted part location more quickly. 

However, the data showed the opposite trend: as the speed and acceleration settings 

increased from 500 to 1500 mm/s and mm/s², the system’s accuracy declined, especially 

when measured by normalized error. The normalized error increased from 0.4658 at 500 
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mm/s to 0.7080 at 1500 mm/s, and average error rose from 8.84 mm to 25.38 mm across 

the same range. 

While these findings are repeatable, their underlying cause remains unclear. One 

likely explanation is that increasing robot speed and acceleration introduces higher-

frequency mechanical oscillations that affect the mounted camera. Because the camera is 

attached via a relatively lightweight plastic mount, these oscillations may create small but 

significant vibrations—especially during rapid accelerations or abrupt stops. Since the 

camera is angled downward toward the part, even slight tilting or vibration can alter the 

perceived profile of the part or distort its edges during image capture. This can cause subtle 

shifts in the estimated part centroid or orientation, ultimately leading to inaccurate pickup 

predictions despite precise robot movement. This idea is supported by exploratory testing 

performed at the robot’s maximum motion limits of 2000 mm/s and mm/s². Although full 

trials were not completed at that level, informal observations revealed consistent detection 

issues, particularly when trying to track multiple part positions in sequence. The system 

could reliably detect the first part position while the robot was stationary, but it often failed 

to capture subsequent observations after initiating motion. This behavior suggests that 

mechanical disturbance introduced by high-speed robot operation could be impacting the 

camera’s ability to capture consistent frames. 

Interestingly, although the robot itself has high internal accuracy and repeatability, 

the pickup accuracy did not improve with increased motion speed. This indicates that the 

source of the error is not in the robot’s motion execution but rather in the upstream 

process—specifically in how part location is perceived and interpreted. Faster robot 

movement may introduce timing irregularities or misalignments between when the image 
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is captured and when the data is processed. Alternatively, it may shorten the exposure 

window or increase motion blur if the robot is still moving or vibrating when a frame is 

captured. These effects are especially impactful in vision-based systems relying on rapid, 

accurate sampling. Another potential contributing factor is the synchronization between 

robot motion commands and image acquisition. At higher speeds, even slight lags in system 

timing or control latency may have a disproportionate impact on performance, particularly 

when parts are moving quickly through the field of view. These timing mismatches could 

explain why the camera successfully detects the part’s first position but fails to reliably 

detect subsequent ones. Although not directly reflected in the final trials, testing at lower-

than-500 mm/s speeds was attempted. However, the robot’s motion became so slow that 

the predicted pickup point occasionally fell outside the robot’s reachable workspace or off 

the edge of the conveyor entirely. As a result, 500 mm/s was selected as the lower limit for 

meaningful testing. 

In conclusion, while increasing robot motion limits might appear beneficial on 

paper, the results show that there is an optimal balance between mechanical responsiveness 

and system stability. Beyond a certain point, speed-related disturbances appear to outweigh 

any gains in reactivity. The observed trend is not as easily attributable to a single source as 

with other variables, but plausible explanations point to vibration, motion blur, timing 

mismatches, and the physical limitations of the camera mount. Future improvements might 

involve stiffening the camera fixture, refining synchronization between sensing and 

motion, or implementing damping techniques to reduce vibration at high speeds. 
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5.3 Feasibility, System-Specific Considerations, and Research Objective Reflection 

A core goal of this research was to evaluate the feasibility of a vision-guided, 

single-camera robotic pick-and-place system for use in practical automation environments. 

Specifically, the system was designed with small- to mid-sized manufacturers in mind—

those who may seek accessible, adaptable solutions to begin integrating automation into 

existing processes without the high cost or complexity of industrial-grade systems. The 

experiments described in Chapter IV and the performance trends discussed in Section V.2 

provide a basis to determine whether this concept can be successfully applied in real-world 

contexts. 

To begin, Research Objective 1 sought to determine the maximal achievable 

accuracy of the system. This was done through testing across a range of variable 

configurations, yielding best-case results such as an average displacement error of 10.87 

mm and normalized error as low as 0.5459. While these values are not sufficient for high-

precision manufacturing contexts, the aim of this project was not to meet the standards of 

advanced multi-sensor platforms, but to assess whether a lower-cost, single-sensor 

approach could achieve reliability within acceptable functional limits for less demanding 

tasks. As shown in the industry comparison section of Chapter IV, accuracy expectations 

differ significantly across industrial applications. In highly regulated or tolerance-critical 

sectors such as aerospace, semiconductors, and fine electronics assembly, even small 

deviations can render a system unusable. In contrast, many general-purpose manufacturing 

or logistics tasks—such as part staging, basic pick-and-place, or rough sorting—can 

tolerate some margin of error depending on the use case. While this system’s average 

accuracy of ~94% does not meet universal standards, it does represent a meaningful level 
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of reliability that could be appropriate for certain operations, particularly if supported by 

thoughtful integration with part and gripper design. This leads to an important system-

specific consideration not emphasized in earlier sections: the relationship between average 

accuracy and overall pickup success. While accuracy was measured as the distance 

between the robot’s gripper center and the actual center of the part, the true practical impact 

of that deviation depends on the geometry of the part and the dimensions of the end effector. 

For example, in this experiment, the gripper width left roughly 8 mm of tolerance on each 

side of the part. This meant that inaccuracy greater than 8 mm in either direction would 

likely result in a failed pickup. However, if a manufacturer used a gripper that extended 20 

mm beyond the part width on each side, that same average deviation could result in a much 

higher pickup success rate. This illustrates a key concept: physical configuration (e.g., 

gripper type, part dimensions) plays a vital role in offsetting system limitations. The robot’s 

errors are always measured in absolute positional terms, but how much those errors matter 

depends on the margins built into the hardware. 

For companies working with larger parts, more forgiving tolerances, or recyclable 

production streams (where the occasional missed part can be recirculated or removed 

without halting operations), a 94% pickup rate may be more than sufficient. Conversely, in 

environments where 100% reliability is mandatory and margin for error is nonexistent, the 

current version of this system would not be suitable. This speaks directly to Research 

Objective 2: determining whether the system can offer a viable level of accuracy relative 

to real-world functional needs. Based on these results, it is clear that while the system may 

not suit every industry, it does align well with use cases that prioritize cost-effectiveness 

and adaptability over extreme precision. 
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Research Objective 3 called for an assessment of practical system limitations. 

Among the most relevant findings are that system accuracy varies most significantly at the 

extreme values of the tested variable configurations. For example, overly high conveyor 

speeds or excessively low scanning heights both resulted in frequent detection failures. 

Additionally, higher robot speed and acceleration limits degraded accuracy in unexpected 

ways—possibly due to vibrations or instability in the lightweight camera mount. This trend 

was not predicted in advance, and while further testing would be needed to isolate the 

cause, it reinforces the importance of evaluating system behavior across its entire usable 

range rather than assuming linear relationships. 

These findings also suggest that improvements in robustness may not necessarily 

require additional sensors or expensive upgrades. For example, refining software-based 

prediction algorithms, optimizing velocity filtering, or improving mechanical stability of 

the camera mount could enhance performance without changing the system’s fundamental 

design. The ability to make such improvements while retaining the low-cost, single-camera 

approach strengthens the system’s value as a modular automation concept. 

Ultimately, the system’s feasibility should be judged by its reliability in real-world 

pickup tasks—not just by abstract measures of accuracy. With modest tuning of end 

effector geometry and part layout, this setup can achieve pickup success rates that approach 

practical utility in a wide range of environments. Its simplicity, affordability, and ease of 

deployment make it a strong candidate for manufacturers who are looking to take early 

steps into automation without requiring the full infrastructure or precision demanded by 

larger-scale systems. 
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In conclusion, the system successfully meets the goals of all three research 

objectives. Objective 1, determining maximal achievable accuracy, was addressed through 

extensive testing. Objective 2, evaluating alignment with practical industry tolerances, 

revealed that while the system may not suit high-precision applications, it performs well 

enough to support general-purpose manufacturing workflows when configured correctly. 

Objective 3, understanding system limitations, helped define the operational window 

where the system is most effective and highlighted factors such as part speed, scanning 

height, and iteration count that influence reliability. Taken together, these results affirm the 

feasibility of this vision-guided robotic system as a viable proof of concept for smaller 

manufacturers seeking scalable, low-cost entry into industrial automation. 

 

5.4 Limitations and Future Work 

While the system demonstrated promising performance and reliability, several 

limitations inherent to the experimental setup were identified throughout the development 

and testing process. These limitations represent areas where future work can directly 

improve the system’s accuracy, consistency, and real-world applicability. 

One key source of error was the manual alignment method used to evaluate the 

accuracy of pickup predictions. As outlined in the methodology, the robot’s gripper was 

manually jogged to align its center with the center of the part. Although visual alignment 

provided a reasonably consistent benchmark, it inevitably introduced small measurement 

inaccuracies, likely on the order of a few millimeters. While this is minor relative to the 

20–30 mm average errors observed across most tests, it could still slightly skew accuracy 

metrics. Future iterations of this work may incorporate a calibration tool—a 3D-printed 
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device with matching geometry to the test part that attaches to the end effector and allows 

more consistent centering. Alternatively, a downward-facing laser pointer, precisely 

aligned to the gripper’s center, could be used to align with a marked center point on the 

part, reducing user-dependent measurement variability. 

Another experimental limitation was the conveyor belt control. While the belt 

maintained relatively stable speeds once set, the adjustment dial was analog, making 

precise and repeatable speed selection difficult. This analog nature also prevented speeds 

below approximately 32 mm/s, where torque limitations likely caused inconsistent motion. 

Future work could integrate a digitally controlled conveyor belt system capable of accurate 

low-speed operation and consistent stepwise control. This would improve consistency 

across trials and allow a broader range of part velocities to be explored, particularly at the 

lower end where performance remains understudied. 

Lighting conditions during testing also posed challenges. Although efforts were 

made to reduce variability—such as closing shades and minimizing personnel movement—

ambient light from windows and ceiling fixtures introduced uncontrolled variance. 

Shadows cast by people or changing daylight conditions affected part visibility and image 

contrast. While the system was designed to be adaptable to uncontrolled lighting 

environments, controlled lighting during the testing and development phase would have 

helped isolate performance-limiting variables and refine the vision system’s robustness. 

Camera limitations also played a role. The Epson camera used in this experiment 

was a 5-megapixel monochromatic sensor, which, while sufficient for basic shape 

recognition, introduced constraints in resolution and exposure control. A higher-resolution 

sensor or one capable of faster shutter speeds could improve image clarity and part profile 
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definition, especially during faster part movement. Additionally, the focus was adjusted 

manually based on visual feedback, which introduces another layer of user-dependent 

variability. A more advanced camera system with digital or assisted focus adjustment—

potentially using a calibration target—would ensure optimal image sharpness and 

consistency. Further, while the Epson RC+ software allows manual adjustment of internal 

camera settings (e.g., brightness, contrast, sharpness), future research could systematically 

explore how these parameters affect detection reliability under varying conditions. 

Beyond these limitations, there are several promising directions for future 

development. One area involves refining the velocity estimation algorithm. Currently, the 

system captures multiple part positions over time and averages the resulting velocities to 

estimate motion. While effective, the process could be improved with active outlier 

filtering. For example, the system could ignore velocity values that deviate sharply from 

the running average—such as sudden spikes caused by blur, lighting changes, or early robot 

movement—provided they exceed a reasonable threshold. Such a filter could help mitigate 

inaccuracies introduced by initial motion irregularities, improving stability without 

increasing computational complexity. Importantly, this kind of filtering must be carefully 

designed to avoid rejecting legitimate values from rapid motion or sudden changes. 

Expanding the tested parameter space is also a key avenue for future work. Several 

variables—such as conveyor speed, robot speed, and robot acceleration—were tested in 

only three configurations due to time constraints. Increasing the resolution of these tests by 

using smaller intervals and more data points would allow a clearer understanding of 

nonlinear trends and error inflection points. Additionally, decoupling the speed and 
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acceleration variables and testing them independently would help clarify their distinct 

effects on system performance. 

Iterations could also be pushed beyond 14. As shown in Chapter IV, there is a clear 

trend of improved accuracy with increased iteration count. Based on the exponential decay 

trendline derived from the data, error continues to decrease as more iterations are used, 

though with diminishing returns. For example, extrapolated values suggest that 25 

iterations may result in an average error of 2.15 mm, 35 iterations in 0.71 mm, and 45 

iterations in just 0.24 mm. These predictions are theoretical and assume diminishing error 

will continue along the established curve, though practical constraints such as time and 

range must also be considered. As noted, the system disregards the first three velocity 

readings to avoid early jerk effects, meaning a 14-iteration configuration effectively uses 

only 11 active readings. Testing higher iteration counts in future work would clarify how 

far this trend continues before plateauing. 

Additional tests should also examine alternate part delivery mechanisms, such as 

angled slides or vibratory feeders, to evaluate how different motion profiles impact 

detection and velocity prediction. Similarly, rotating the conveyor belt’s orientation within 

the robot’s field of view—introducing greater x- and y-axis mixing—would offer insight 

into system robustness across diverse spatial configurations. These tests could help validate 

the system’s flexibility in adapting to complex layouts or unusual part trajectories. 

Beyond experimental testing, future work should aim to deploy the system across 

a range of industrial conditions. This includes testing with parts of different sizes, shapes, 

materials, and surface finishes, as well as exploring a broader array of end effectors. Such 

work would help determine whether the ~94% accuracy observed in this study holds 
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consistently or varies depending on configuration and would allow researchers to quantify 

the degree to which part and gripper dimensions offset positioning error in practice. 

Additionally, incorporating lightweight artificial intelligence (AI) components may 

help further optimize detection and estimation. While it is important to avoid 

overcomplicating the system—especially given its goal of remaining accessible and 

affordable—a simple AI model trained on part movement patterns or camera outputs could 

improve both velocity estimation and part recognition. This could take the form of neural 

network-based image analysis or predictive trajectory modeling based on prior data. 

Importantly, any such addition should preserve the system’s ease of use and low overhead, 

which are key differentiators from more expensive multi-sensor solutions. 

In summary, the experimental limitations observed in this work provide clear paths 

for immediate system improvement. Many of the errors stem from practical, solvable issues 

in measurement precision, camera tuning, conveyor control, and lighting consistency. 

Meanwhile, longer-term future work should focus on increasing testing coverage, refining 

algorithms, exploring hardware variation, and potentially integrating modest AI assistance. 

Each of these developments would enhance the system’s accuracy, repeatability, and 

robustness, helping it better meet the demands of real-world industrial automation while 

remaining cost-effective and adaptable. 

 

5.5 Concluding Remarks 

This work set out with three core research objectives: to determine the maximal 

achievable accuracy of a single-camera robotic pick-and-place system, to evaluate the key 

variables that influence this accuracy, and to assess the system’s practical viability in real-
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world industrial applications. Through extensive experimental testing and analysis across 

multiple operational parameters—including pickup method, scanning height, part velocity, 

iteration count, and robot motion constraints—each objective was successfully addressed. 

The data collected offers a clear picture of how design decisions influence system 

performance, revealing key trends and trade-offs across configurations. 

While the system does not meet the precision thresholds required by high-end 

industrial robotics, it consistently demonstrated reliable detection and pickup performance 

across a range of realistic conditions. These results support the system’s viability as a 

robust and adaptable solution for simpler automation tasks. Its straightforward design, low 

hardware complexity, and flexible testbed make it a compelling candidate for research, 

prototyping, and certain real-world deployment scenarios—particularly where ultra-

precise motion is not essential. Importantly, the actual pickup success rate in applied 

contexts will depend on system-specific factors such as the size of the gripper, the geometry 

of the part, and the required tolerances of the task. When those elements are thoughtfully 

configured, this system can maintain a high rate of successful operation. The ability to 

compensate for accuracy limitations through part and gripper design enables a level of 

adaptability not often emphasized in more rigid, high-precision systems. 

The broader significance of this research lies not just in its proof-of-concept results, 

but in what it represents for the accessibility of automation technology. Industrial 

automation, while increasingly vital across sectors, often remains out of reach for small-

to-midsize manufacturers due to high capital costs, integration complexity, and the 

expertise needed to deploy cutting-edge systems. These barriers disproportionately benefit 

larger corporations with the infrastructure to support such investments. What this system 
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demonstrates is that a simpler, more modular, and more cost-effective approach can still 

yield meaningful automation—opening the door to efficiency improvements for companies 

that have traditionally been excluded from these benefits. Moreover, the work points to a 

promising path forward. Future enhancements in code sophistication, camera quality, 

image processing algorithms, and intelligent velocity filtering may allow systems such as 

this to shrink the performance gap between affordable solutions and top-tier industrial 

setups. The integration of lightweight AI models to assist in prediction and refinement 

further strengthens this potential. As these improvements are realized, the trade-off 

between system cost and operational accuracy may narrow even further, making affordable 

automation not only viable, but competitive. Beyond the technical contributions, this 

research underscores the value of designing engineering solutions that prioritize 

inclusivity, scalability, and practicality. The system’s adaptability to different 

environments, its modular testing framework, and its focus on quantifiable performance 

provide a model for how applied robotics can serve real-world needs—even when 

perfection isn’t the goal. Creating tools that help level the playing field for smaller 

manufacturers reflects not only a meaningful engineering challenge, but a socially 

significant one as well. Ultimately, this project represents more than a set of experiments 

or error statistics, it embodies a practical vision for bridging the gap between what 

automation can do and who can afford to implement it. In exploring the capabilities of a 

minimalist, single-camera solution, this research has delivered a compelling proof of 

concept with genuine promise for future adoption, refinement, and impact. Its success lies 

not just in the numbers it achieved, but in the possibility it creates for innovation, 

accessibility, and more equitable participation in the future of automated manufacturing. 
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Appendix A  

Appendix A presents the full data for all predictive pickup tests conducted across 

each method and parameter variation described in Chapter IV. Each table in this appendix 

follows an identical structure: ten individual trials are shown along with recorded errors in 

the X, Y, and U directions, and an “Outlier” column flags values identified as outliers based 

on interquartile range (IQR) analysis. Below each trial block, statistical summaries are 

provided, including averages, standard deviations, quartiles (Q1, Q2, Q3), IQR values, and 

calculated upper/lower bounds for outlier detection. A blank value signifies a failed 

attempt. Unless otherwise noted, all tables follow this structure. Each table caption 

identifies the specific test case or parameter value under which the data was collected. 

 

Table A.1 – Full data for the Direct Kinematic Method test case.  

Trials X Y U Outlier 

1 42.8 26 6.9 No 

2 32.6 20.8 7.4 No 

3 34.9 35.6 7 No 

4 33.3 35.1 6 No 

5 48 26.8 7.3 No 

6 31.9 20.8 7.5 No 

7 47.2 41 5.6 No 

8 47 36.1 5.4 No 

9 43.2 33.5 6.5 No 

10 40.2 25.7 8.1 No 

Averages 40.11 30.14 6.77  
Standard Dev 6.11644505 6.64563014 0.83432608  

Median 41.5 30.15 6.95  
Q1 33.7 25.775 6.125  
Q2 41.5 30.15 6.95  
Q3 46.05 35.475 7.375  

IQR 12.35 9.7 1.25  
Lower Bound 15.175 11.225 4.25  
Upper Bound 64.575 50.025 9.25  
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Table A.2 – Full data for the Hypotenuse Method test case.  

Trials X Y U Outlier 

1 8.4 43.8 6.1 Yes 

2 11.8 33.3 8.1 No 

3 14.6 33.4 4.4 No 

4 14.5 15.1 6 Yes 

5 8.4 41.1 4.5 Yes 

6 20.5 32.2 2.9 No 

7 3 32 5.6 No 

8 2.6 27 7 No 

9 23.4 32 7.4 No 

10 26.1 30.3 6 No 

Averages 13.33 32.02 5.8  
Standard Dev 7.69195034 7.34326903 1.46833239  

Median 13.15 32.1 6  
Q1 8.4 30.725 4.775  
Q2 13.15 32.1 6  
Q3 19.025 33.375 6.775  

IQR 10.625 2.65 2  
Lower Bound -7.5375 26.75 1.775  
Upper Bound 34.9625 37.35 9.775  

 

Table A.3 – Full data for the Ambush Method test case.  

Trials X Y U Outlier 

1 42.47 25.69 10 No 

2 49.48 10.87 2.33 No 

3 33.88 27.35 7.62 No 

4 55.34 27.64 9.91 No 

5 0.33 22.99 5.21 Yes 

6 110.62 1.4 7.83 Yes 

7 3 4.96 3.37 Yes 

8 38.09 5.57 3 No 

9 38.61 35.03 7.27 No 

10 45.07 15.66 5.8 No 

Averages 41.689 17.716 6.234  
Standard Dev 28.8121372 11.0000984 2.61489273  

Median 40.54 19.325 6.535  
Q1 34.9325 6.895 3.83  
Q2 40.54 19.325 6.535  
Q3 48.3775 26.935 7.7775  

IQR 13.445 20.04 3.9475  
Lower Bound 14.765 -23.165 -2.09125  
Upper Bound 68.545 56.995 13.69875  
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Table A.4 – Full data for the 32 mm/s conveyor belt speed case. 

Trials X Y U Outlier 

1 26.29 0 7.21 No 

2 294.95 7.62 7.81 Yes 

3 301.44 12.33 3.95 Yes 

4 96.96 0 6.79 No 

5 27.11 0 6.82 No 

6 7.14 0 4.63 No 

7 20.25 0 3 No 

8 40.38 10.59 4.93 No 

9 54.96 1.42 5.43 No 

10 28.88 6.93 4.61 No 

Averages 89.836 3.889 5.518  
Standard Dev 106.738047 4.7014837 1.48979059  

Median 34.63 0.71 5.18  
Q1 26.495 0 4.615  
Q2 34.63 0.71 5.18  
Q3 86.46 7.4475 6.8125  

IQR 59.965 7.4475 2.1975  
Lower Bound -63.4525 -11.17125 1.31875  
Upper Bound 176.4075 18.61875 10.10875  

 

Table A.5 – Full data for the 50 mm/s conveyor belt speed case. 

Trials X Y U Outlier 

1 8.4 43.8 6.1 Yes 

2 11.8 33.3 8.1 No 

3 14.6 33.4 4.4 No 

4 14.5 15.1 6 Yes 

5 8.4 41.1 4.5 Yes 

6 20.5 32.2 2.9 No 

7 3 32 5.6 No 

8 2.6 27 7 No 

9 23.4 32 7.4 No 

10 26.1 30.3 6 No 

Averages 13.33 32.02 5.8  
Standard Dev 7.69195034 7.34326903 1.46833239  

Median 13.15 32.1 6  
Q1 8.4 30.725 4.775  
Q2 13.15 32.1 6  
Q3 19.025 33.375 6.775  

IQR 10.625 2.65 2  
Lower Bound -7.5375 26.75 1.775  
Upper Bound 34.9625 37.35 9.775  
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Table A.6 – Full data for the 95 mm/s conveyor belt speed case. 

Trials X Y U Outlier 

1 15.54 23.7 7.57 No 

2    No 

3    No 

4 0 13.46 5.02 Yes 

5 1.48 10.57 8.55 No 

6    No 

7 59.45 9.52 7.33 No 

8    No 

9    No 

10       No 

Averages 19.1175 14.3125 7.1175  
Standard Dev 24.0627787 5.60861558 1.29436036  

Median 8.51 12.015 7.45  
Q1 1.11 10.3075 6.7525  
Q2 8.51 12.015 7.45  
Q3 26.5175 16.02 7.815  

IQR 25.4075 5.7125 1.0625  
Lower Bound -37.00125 1.73875 5.15875  
Upper Bound 64.62875 24.58875 9.40875  

 

Table A.7 – Full data for the 500 mm/s and mm/s2 robot speed and acceleration limits case. 

Trials X Y U Outlier 

1 218.35 0 7.45 Yes 

2    No 

3 24.17 0.64 6 No 

4 30.74 0 5.84 No 

5 0 0 6.09 No 

6 12.42 0 5.72 No 

7 0 2.17 5.19 Yes 

8 61.57 0 7.75 Yes 

9 20.41 0 6.44 No 

10 22.05 6.4 5.79 Yes 

Averages 43.3011111 1.02333333 6.25222222  
Standard Dev 64.2727477 2.01807389 0.78869481  

Median 22.05 0 6  
Q1 12.42 0 5.79  
Q2 22.05 0 6  
Q3 30.74 0.64 6.44  

IQR 18.32 0.64 0.65  
Lower Bound -15.06 -0.96 4.815  
Upper Bound 58.22 1.6 7.415  
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Table A.8 – Full data for the 1000 mm/s and mm/s2 robot speed and acceleration limits 

case. 

Trials X Y U Outlier 

1 8.4 43.8 6.1 Yes 

2 11.8 33.3 8.1 No 

3 14.6 33.4 4.4 No 

4 14.5 15.1 6 Yes 

5 8.4 41.1 4.5 Yes 

6 20.5 32.2 2.9 No 

7 3 32 5.6 No 

8 2.6 27 7 No 

9 23.4 32 7.4 No 

10 26.1 30.3 6 No 

Averages 13.33 32.02 5.8  
Standard Dev 7.69195034 7.34326903 1.46833239  

Median 13.15 32.1 6  
Q1 8.4 30.725 4.775  
Q2 13.15 32.1 6  
Q3 19.025 33.375 6.775  

IQR 10.625 2.65 2  
Lower Bound -7.5375 26.75 1.775  
Upper Bound 34.9625 37.35 9.775  

 

Table A.9 – Full data for the 1500 mm/s and mm/s2 robot speed and acceleration limits 

case. 

Trials X Y U Outlier 

1 50.41 7.18 8.85 No 

2 125.65 0 4.83 Yes 

3 52.6 10.21 3.43 No 

4 48.15 2.82 6.04 No 

5 84.75 0 7.69 Yes 

6 29.87 4.44 3.8 No 

7 41.32 10.23 3.92 No 

8 46.05 0 5.35 No 

9 43.88 8.17 7.73 No 

10 24.25 9.74 8.4 Yes 

Averages 54.693 5.279 6.004  
Standard Dev 28.137647 4.13586134 1.93120791  

Median 47.1 5.81 5.695  
Q1 41.96 0.705 4.1475  
Q2 47.1 5.81 5.695  
Q3 52.0525 9.3475 7.72  

IQR 10.0925 8.6425 3.5725  
Lower Bound 26.82125 -12.25875 -1.21125  
Upper Bound 67.19125 22.31125 13.07875  

 



 

A6 

Table A.10 – Full data for the 650 mm scanning height case. 

Trials X Y U Outlier 

1 15.83 0 9.47 No 

2 31.66 0 8.26 No 

3 250.21 17.456 26.76 Yes 

4 157.49 10.87 6.97 No 

5    No 

6 5.83 0.01 6.71 No 

7 4.04 9.35 9.65 No 

8 22.26 8.67 9.39 No 

9    No 

10 64.97 0 8.13 No 

Averages 69.03625 5.7945 10.6675  
Standard Dev 83.1414286 6.29335457 6.17088071  

Median 26.96 4.34 8.825  
Q1 13.33 0 7.84  
Q2 26.96 4.34 8.825  
Q3 88.1 9.73 9.515  

IQR 74.77 9.73 1.675  
Lower Bound -98.825 -14.595 5.3275  
Upper Bound 200.255 24.325 12.0275  

 

Table A.11 – Full data for the 680 mm scanning height case. 

Trials X Y U Outlier 

1 49.81 0 7.86 No 

2 28.14 16.74 7.45 No 

3 102 12.37 9.27 No 

4 23.99 23.82 9.49 No 

5 57.41 0.01 6.8 No 

6 65.39 10.62 8.47 No 

7 78.12 6.6 2.89 Yes 

8 36.31 0 7.11 No 

9 32.34 0.002 7.28 No 

10 18.24 5.78 6.14 No 

Averages 49.175 7.5942 7.276  
Standard Dev 25.3812794 7.83371602 1.77359635  

Median 43.06 6.19 7.365  
Q1 29.19 0.004 6.8775  
Q2 43.06 6.19 7.365  
Q3 63.395 11.9325 8.3175  

IQR 34.205 11.9285 1.44  
Lower Bound -22.1175 -17.88875 4.7175  
Upper Bound 114.7025 29.82525 10.4775  
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Table A.12 – Full data for the 710 mm scanning height case. 

Trials X Y U Outlier 

1 24.228 0.005 5.891 Yes 

2 10.324 0 7.424 No 

3 26.103 0 7.647 No 

4 41.159 0 8.6033 Yes 

5 29.365 0 7.462 No 

6 0 0.3 7.136 Yes 

7 22.636 0.001 10.217 Yes 

8 17.3825 0.001 5.185 Yes 

9 0.001 6.004 7.147 Yes 

10 68.926 0 7.402 Yes 

Averages 24.01245 0.6311 7.41143  
Standard Dev 19.3149419 1.7931863 1.29478019  

Median 23.432 0.0005 7.413  
Q1 12.088625 0 7.13875  
Q2 23.432 0.0005 7.413  
Q3 28.5495 0.004 7.60075  

IQR 16.460875 0.004 0.462  
Lower Bound -12.602688 -0.006 6.44575  
Upper Bound 53.2408125 0.01 8.29375  

 

 

Table A.13 – Full data for the 740 mm scanning height case. 

Trials X Y U Outlier 

1 0 16.01 6.72 Yes 

2 11.81 4.49 6.03 No 

3 36.82 3.08 5.5 No 

4 40.74 6.86 7.11 No 

5 0 2.31 6.94 No 

6 18.874 0.003 9.74 No 

7 24.93 0 8.86 No 

8 42.72 1.26 7.86 No 

9 16.873 3.062 7.241 No 

10 0 4.574 4.825 No 

Averages 19.2767 4.1649 7.0826  
Standard Dev 15.8948224 4.43602648 1.40400422  

Median 17.8735 3.071 7.025  
Q1 2.9525 1.5225 6.2025  
Q2 17.8735 3.071 7.025  
Q3 33.8475 4.553 7.70525  

IQR 30.895 3.0305 1.50275  
Lower Bound -43.39 -3.02325 3.948375  
Upper Bound 80.19 9.09875 9.959375  
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Table A.14 – Full data for the 770 mm scanning height case. 

Trials X Y U Outlier 

1 8.4 43.8 6.1 Yes 

2 11.8 33.3 8.1 No 

3 14.6 33.4 4.4 No 

4 14.5 15.1 6 Yes 

5 8.4 41.1 4.5 Yes 

6 20.5 32.2 2.9 No 

7 3 32 5.6 No 

8 2.6 27 7 No 

9 23.4 32 7.4 No 

10 26.1 30.3 6 No 

Averages 13.33 32.02 6  
Standard Dev 7.69195034 7.34326903 1.46833239  

Median 13.15 32.1 6  
Q1 8.4 30.725 4.775  
Q2 13.15 32.1 6  
Q3 19.025 33.375 6.775  

IQR 10.625 2.65 2  
Lower Bound -7.5375 26.75 1.775  
Upper Bound 34.9625 37.35 9.775  

 

 

Table A.15 – Full data for the 800 mm scanning height case. 

Trials X Y U Outlier 

1 62.13 8.74 7.11 No 

2    No 

3    No 

4    No 

5    No 

6    No 

7    No 

8    No 

9    No 

10       No 

Averages 62.13 8.74 7.11  
Standard Dev 0 0 0  

Median 62.13 8.74 7.11  
Q1 62.13 8.74 7.11  
Q2 62.13 8.74 7.11  
Q3 62.13 8.74 7.11  

IQR 0 0 0  
Lower Bound 62.13 8.74 7.11  
Upper Bound 62.13 8.74 7.11  
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Table A.16 – Full data for the 7 iterations case. Excluded from trend analysis. 

Trials X Y U Outlier 

1 27.66 10.14 6.79 No 

2 42.12 6.43 5.85 No 

3 15.04 0 7.43 Yes 

4 21.78 8.61 7.04 No 

5 0 7.84 9.82 Yes 

6 76.86 10.87 7.25 Yes 

7 24.5 7.86 5.86 No 

8 15.69 0.1 10.04 Yes 

9 37.5 7.35 6.12 No 

10 0 2.76 7.33 No 

Averages 26.115 6.196 7.353  
Standard Dev 21.4008024 3.70735269 1.4052192  

Median 23.14 7.595 7.145  
Q1 15.2025 3.6775 6.2875  
Q2 23.14 7.595 7.145  
Q3 35.04 8.4225 7.405  

IQR 19.8375 4.745 1.1175  
Lower Bound -14.55375 -3.44 4.61125  
Upper Bound 64.79625 15.54 9.08125  

 

 

Table A.17 – Full data for the 8 iterations case. 

Trials X Y U Outlier 

1 20.9 30.798 4.72 Yes 

2 17.347 36.092 6.652 No 

3 22.27 43.898 7.16 No 

4 3.854 36.5406 6.856 No 

5 8.998 30.558 7.39 No 

6 26.285 28.059 1.567 Yes 

7 12.246 26.837 7.707 No 

8 9.61 49.069 6.109 Yes 

9 34.671 30.592 6.72 No 

10 7.624 29.766 6.876 No 

Averages 16.3805 34.22096 6.1757  
Standard Dev 9.16358164 6.88210347 1.72128528  

Median 14.7965 30.695 6.788  
Q1 9.151 29.964 6.24475  
Q2 14.7965 30.695 6.788  
Q3 21.9275 36.42845 7.089  

IQR 12.7765 6.46445 0.84425  
Lower Bound -10.01375 20.267325 4.978375  
Upper Bound 41.09225 46.125125 8.355375  
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Table A.18 – Full data for the 9 iterations case. 

Trials X Y U Outlier 

1 41.327 21.6 6.35 No 

2 21.512 35.281 7 No 

3 20.44 21.805 6.609 No 

4 54.3175 25.492 3.872 No 

5 33.85 36.249 9.022 No 

6 43.5 39.075 7.405 No 

7 0 35.266 5.367 No 

8 36.3187 35.853 7.078 No 

9 16.155 27.483 6.888 No 

10 24.79 23.235 1.708 Yes 

Averages 29.22102 30.1339 6.1299  
Standard Dev 14.9426904 6.4903333 1.94247561  

Median 29.32 31.3745 6.7485  
Q1 20.708 23.79925 5.61275  
Q2 29.32 31.3745 6.7485  
Q3 40.074925 35.71 7.0585  

IQR 19.366925 11.91075 1.44575  
Lower Bound -8.3423875 5.933125 3.444125  
Upper Bound 69.1253125 53.576125 9.227125  

 

 

Table A.19 – Full data for the 10 iterations case. 

Trials X Y U Outlier 

1 8.4 43.8 6.1 Yes 

2 11.8 33.3 8.1 No 

3 14.6 33.4 4.4 No 

4 14.5 15.1 6 Yes 

5 8.4 41.1 4.5 Yes 

6 20.5 32.2 2.9 No 

7 3 32 5.6 No 

8 2.6 27 7 No 

9 23.4 32 7.4 No 

10 26.1 30.3 6 No 

Averages 13.33 32.02 5.8  
Standard Dev 7.69195034 7.34326903 1.46833239  

Median 13.15 32.1 6  
Q1 8.4 30.725 4.775  
Q2 13.15 32.1 6  
Q3 19.025 33.375 6.775  

IQR 10.625 2.65 2  
Lower Bound -7.5375 26.75 1.775  
Upper Bound 34.9625 37.35 9.775  
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Table A.20 – Full data for the 11 iterations case. 

Trials X Y U Outlier 

1 14.453 27.975 8.383 No 

2 19 25.84 4.699 No 

3 0.022 36.1 5.109 No 

4 46.559 23.927 10.849 No 

5 43.315 48.919 4.109 No 

6 17.735 38.51 3.843 No 

7 28.105 24.345 7.007 No 

8 1.481 23.024 7.838 No 

9 5.196 15.54 6.557 No 

10 10.614 37.808 7.98 No 

Averages 18.648 30.1988 6.6374  
Standard Dev 15.4357066 9.36029415 2.10871184  

Median 16.094 26.9075 6.782  
Q1 6.5505 24.0315 4.8015  
Q2 16.094 26.9075 6.782  
Q3 25.82875 37.381 7.9445  

IQR 19.27825 13.3495 3.143  
Lower Bound -22.366875 4.00725 0.087  
Upper Bound 54.746125 57.40525 12.659  

 

 

Table A.21 – Full data for the 12 iterations case. 

Trials X Y U Outlier 

1 21.262 21.146 4.936 No 

2 10.926 25.514 4.772 No 

3 43.62 21.664 6.83 Yes 

4 11.435 30.309 7.639 No 

5 14.852 39.145 7.67 No 

6 2.233 28.124 7.41 No 

7 14.016 39.978 6.7784 No 

8 21.319 27.77 3.684 No 

9 62.755 31.336 7.478 Yes 

10 8.093 35.082 8.693 No 

Averages 21.0511 30.0068 6.58904  
Standard Dev 17.4746345 6.22412108 1.50761783  

Median 14.434 29.2165 7.12  
Q1 11.05325 26.078 5.3966  
Q2 14.434 29.2165 7.12  
Q3 21.30475 34.1455 7.59875  

IQR 10.2515 8.0675 2.20215  
Lower Bound -4.324 13.97675 2.093375  
Upper Bound 36.682 46.24675 10.901975  
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Table A.22 – Full data for the 13 iterations case. 

Trials X Y U Outlier 

1 5.529 38.572 7.611 No 

2 6.932 20.386 7.081 No 

3 0 35.232 4.7515 No 

4 20.427 15.16 8.281 No 

5 35.378 28.403 4.89 No 

6 9.083 22.644 4.12 No 

7 21.041 46.071 7.853 No 

8 14.068 27.505 4.694 No 

9 10.297 41.132 6.025 No 

10 26.075 22.887 4.146 No 

Averages 14.883 29.7992 5.94525  
Standard Dev 10.205478 9.53301527 1.54399824  

Median 12.1825 27.954 5.4575  
Q1 7.46975 22.70475 4.708375  
Q2 12.1825 27.954 5.4575  
Q3 20.8875 37.737 7.4785  

IQR 13.41775 15.03225 2.770125  
Lower Bound -

12.656875 
0.156375 0.5531875  

Upper Bound 41.014125 60.285375 11.6336875  
 

 

Table A.23 – Full data for the 14 iterations case. 

Trials X Y U Outlier 

1 10.34 11.13 7.69 No 

2 15.82 10.94 5.42 No 

3 7.78 0 8.95 No 

4 10.45 0 7.82 No 

5 25.65 14.61 4.41 No 

6 17.58 9.27 7.36 No 

7 9.63 6.4 7.16 No 

8 52.91 0 9.63 Yes 

9 42.46 3.59 5.72 No 

10 0 0 4.47 No 

Averages 19.262 5.594 6.863  
Standard Dev 15.743913 5.32790052 1.70526274  

Median 13.135 4.995 7.26  
Q1 9.8075 0 5.495  
Q2 13.135 4.995 7.26  
Q3 23.6325 10.5225 7.7875  

IQR 13.825 10.5225 2.2925  
Lower Bound -10.93 -15.78375 2.05625  
Upper Bound 44.37 26.30625 11.22625  
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Appendix B 

Appendix B outlines the complete testing procedure used to evaluate the 

performance of the vision-guided robotic system. The procedure was applied consistently 

across all combinations of predictive pickup methods and system parameter variations. The 

term “arming” refers to the process of initializing the robot and camera to begin tracking 

for an approaching part. Although the robot did not perform physical pickups during 

testing, it generated predicted x, y, and u coordinates at the moment of virtual pickup, which 

were later compared to the actual required pickup coordinates. The step-by-step procedure 

below provides a detailed description of how these values were collected across all test 

cases. 

 

Testing Procedure 

1. The robot was powered on and initialized using the Epson RC+ software 

environment. 

2. Experimental conditions were configured based on the variable under 

investigation. For example, when testing the influence of conveyor belt speed, 

the desired speed was set in the system parameters. Similarly, if scanning height 

or other factors were being tested, those values were adjusted accordingly. 

3. The conveyor belt was turned on and brought to the desired operating speed. 

4. The system was armed, placing the robot in a ready state in its starting position 

and allowing the camera to begin monitoring for incoming parts. 

5. A test part was placed manually at the start of the conveyor in a randomized 

orientation. 
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6. As the part moved along the conveyor, the robot system tracked its position and 

orientation. The robot did not attempt an actual pickup during this phase; it only 

executed predictive tracking routines. 

7. At the precise moment the robot would have executed the pickup, the conveyor 

belt was stopped, and the robot system displayed its predicted pickup 

coordinates in the X, Y, and U (rotation) directions. 

8. The predicted pickup coordinates were recorded. 

9. Using the Epson RC+ jog function, the robot end effector was manually moved 

to the physical location of the part to determine the actual X, Y, and U 

coordinates required for a successful pickup. These coordinates were displayed 

live through the jog interface. 

10. The actual coordinates were recorded and later compared to the predicted values 

to assess positional and rotational accuracy. 

11. Steps 5–10 were repeated for a total of ten trials per test case. 

12. This procedure was repeated for each combination of predictive pickup method 

and test parameter condition evaluated in the study. 
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