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ABSTRACT

This thesis investigates the performance and limitations of a simplified vision-
guided robotic system designed to perform dynamic pick-and-place tasks using a single,
end-mounted camera. In contrast to high-cost, multi-sensor industrial solutions, this
approach emphasizes low-cost implementation, minimal calibration, and off-the-shelf
components, making it a good candidate for small to mid-sized manufacturers seeking
entry-level automation. The study explores whether such a system can achieve practical
accuracy and reliability when operating in real-time environments, and what specific
system parameters most critically influence performance.

The experimental setup includes a six-axis Epson VT6 robotic manipulator
equipped with a parallel gripper and an industrial camera mounted directly to the end of
the arm. All vision processing and motion control were implemented using the Epson RC+
software suite, with no external sensors or auxiliary computing. The camera captures part
motion on a conveyor belt, and the robot attempts to intercept the part in motion using one
of three predictive strategies: a method based on vertical descent time, a method that
models full diagonal travel using a closed-form kinematic solution, and an ambush-style
method that positions the robot in advance at a fixed location and waits for the part to
arrive. Experiments were conducted to evaluate system accuracy across three key metrics:
positional error in the planar motion, and rotational misalignment. Each predictive strategy
was tested under controlled baseline conditions to determine which yielded the most
accurate and repeatable results. In addition, a set of system-level parameters—including
scanning height, conveyor belt speed, number of velocity estimation iterations, and robot

motion constraints—were varied independently to assess their impact on performance.
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Results show that the Hypotenuse Method produced the most accurate positional
predictions in the x direction and the most consistent rotational alignment, with average
errors of 14.57 mm and 5.91°, respectively. The Ambush Method outperformed others in
y direction accuracy, averaging only 21.12 mm of error. Overall, the system maintained
high trial success rates in baseline configurations but exhibited significant degradation in
performance under extreme scanning heights, fast conveyor speeds, and low velocity
estimation iterations. Compared to industry standards, the system’s accuracy falls short of
high-end expectations, particularly in applications requiring sub-millimeter precision or
sub-degree alignment. However, in less demanding environments—such as basic sorting,
semi-structured part transfers, or part identification—the results suggest that this low-cost,
single-camera approach can serve as a viable alternative. The data collected also provide a
valuable baseline for future optimization.

In summary, this work presents a quantitative evaluation of a minimalist vision-
guided robotic system, establishing its strengths, limitations, and key performance
boundaries. It offers a reference framework for practitioners and researchers seeking cost-
effective automation strategies using commercially available hardware and straightforward

integration.
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Term or Symbol

NOMENCLATURE

Definition

X

y

H pickup
LiDAR

ROS

IQR
APF
RRT

DQN

RC+

mm/s
mm/s?

Horizontal position of the part or gripper in the global frame
Horizontal position of the part or gripper in the global frame
Vertical height or elevation of the part or gripper in the global frame
Angular orientation of the part or gripper, around z-axis

Predicted time to intercept the part (s)

Estimated horizontal velocity of the part in the x-axis (mm/s)
Estimated horizontal velocity of the part in the y-axis (mm/s)
Maximum acceleration of the robotic arm (mm/s?)

Maximum speed of the robotic arm (mm/s)

Camera scanning height above the conveyor (mm)

Pickup height or vertical position of the part in the z-axis (mm)

Light Detection and Ranging; a remote sensing method that uses
laser pulses to measure distance to an object, commonly used in
robotic systems for 3D mapping and obstacle detection.

Robot Operating System — middleware used for robotic control and
sensor integration

Interquartile Range — used in outlier detection
Artificial Potential Fields — a path planning algorithm for robotics

Rapidly-exploring Random Tree — a motion planning algorithm for
high-dimensional spaces

Reinforcement Learning — an Al method for training robots through
experience

Deep Q-Network — a neural network architecture used in
reinforcement learning

Epson’s proprietary software suite for robot and vision control
Millimeters — unit of linear distance

Millimeters per second — unit of velocity

Millimeters per second squared — unit of acceleration

Degrees — unit for angular measurements
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CHAPTER I: Introduction

Robotic pick-and-place systems are foundational elements in modern
manufacturing and industrial automation. These systems allow robots to detect, grasp, and
relocate objects with high reliability across diverse production environments. Traditionally,
achieving the precision required for these tasks has involved the use of complex multi-
sensor configurations, external vision networks, and/or sophisticated machine learning
models. While effective, these systems present notable drawbacks, particularly for small to
medium-sized manufacturers [1], [2]. These include high implementation and maintenance
costs, the need for extensive and often time-consuming calibration procedures, and limited
adaptability when production layouts or product types change. For larger industrial players
with more infrastructure and dedicated engineering teams, such systems may be justified.
However, for smaller-scale operations seeking cost-effective automation, these
requirements can be significant barriers to adoption. As a result, there is growing interest
in developing simplified, low-cost alternatives that can deliver reasonable accuracy without
excessive system overhead [3].

This thesis evaluates one such alternative: a vision-guided robotic pick-and-place
system that employs a single, end-mounted camera on a six-axis industrial robot. Unlike
external vision setups or systems requiring intricate software pipelines, this design relies
solely on commercially available, off-the-shelf components and the manufacturer’s
supplied control software. By eliminating the need for additional sensors or custom
integration, the system minimizes overall complexity and cost [3], [4]. The central research
objective of this work is to assess the practical limitations of this simplified vision-based

approach in dynamic environments. Specifically, the study investigates how different
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system parameters influence accuracy and seeks to characterize the trade-offs inherent in
this single-camera design.

In this context, "accuracy limitations" are defined across three key dimensions: (1)
positional error, or the difference between the predicted and actual position of the part at
the moment of pickup; (2) angular misalignment, referring to discrepancies between the
predicted and actual orientation of the part; and (3) repeatability, or the system's ability to
deliver consistent results across repeated trials under the same conditions. These metrics
reflect both the robot’s precision and the vision system's reliability, which are crucial for
successful pick-and-place operations.

Several system parameters were selected as experimental variables due to their
anticipated impact on prediction performance. These included conveyor belt speed,
scanning height of the camera, the maximum speed and acceleration constraints of the
robot, and the number of velocity estimation iterations used to calculate part motion. By
systematically varying these factors, the study aims to uncover their individual and
collective effects on system performance. For instance, it was anticipated that faster
conveyor belt speeds could introduce greater positional error, potentially caused by motion
blur and reduced processing time [5]. It was also expected that changes in scanning height
could influence image resolution and field of view, potentially impacting tracking
reliability [6].

This kind of system is especially relevant to small and medium-sized manufacturers
that may not have the financial or technical resources to implement complex automation
solutions. For example, consider a small company with a single production line. This

company may not be able to invest in advanced vision systems or custom robotic software,
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but could still benefit greatly from a commercially available robotic arm equipped with an
onboard camera. Even if the system does not achieve perfect accuracy in every instance,
the cost savings and operational flexibility it offers may outweigh the marginal loss in
performance [4]. Similarly, businesses with dynamic product lines, frequent part changes,
or evolving layouts can leverage the system's mobility and minimal calibration needs to
redeploy it efficiently across different tasks without incurring major setup costs.

The initial phase of this research involved designing the robotic control framework
and assembling the test environment. A central goal was to isolate physical and algorithmic
factors from software engineering complexities. This was achieved by implementing a
minimal yet robust control program that enabled the robot to scan, track, and intercept
moving parts on a linear conveyor. The robot continuously monitored parts using its
mounted camera, calculated future part positions based on observed velocities, and
executed pickup motions aimed at intercepting the part as it passed underneath. Figure 1
illustrates the core logic of this system. Once the robot is activated, it enters a feedback
loop where it detects the part, estimates velocity, and incrementally moves toward the
predicted intercept location. This cycle repeats for a predefined number of iterations (the
“number of velocity estimation iterations” parameter) before the robot attempts the pickup.
Accuracy was measured by the difference between the robot’s predicted pickup coordinates

and the actual position of the part, at the moment of attempted pickup.
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Figure 1: Core control logic of the vision-based system. This diagram shows how the

program operates, using image processing, robot control, and velocity estimation.

A key focus of the experimental phase was the evaluation of three distinct pickup
prediction methods. The first, the Direct Kinematic (Height-Offset) method, estimated
pickup timing based solely on vertical descent time from the camera’s scanning position to
the conveyor surface, as illustrated in the left portion of the diagram in Figure 2. The second
approach, the Hypotenuse Method, accounted for diagonal motion and solved for the total
travel time using a quadratic equation. This method models the robot’s actual diagonal
trajectory toward the predicted part location and typically resulted in better alignment. The
third strategy, the Ambush Method, bypassed motion prediction altogether. The gripper
pre-positions itself above the conveyor, ahead of the part, and waits for the part to pass
underneath. This eliminates trajectory estimation error but increases sensitivity to timing
and part velocity fluctuations. Figure 2 below offers a visual comparison of these strategies
and serves as a conceptual reference for understanding how each method attempts part

interception.
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Figure 2: Visual comparison of the three pickup methods: Direct Kinematic,
Hypotenuse, and Ambush. The part is shown on the conveyor, and the gripper is

shown as an inverted “u” channel.

In addition to comparing prediction strategies, the study assessed how several key
system parameters influenced the robot’s ability to accurately track and intercept moving
parts. One such parameter was conveyor belt speed, which was varied to observe how the
system performed when parts moved at different velocities. Faster conveyor speeds reduce
the time available for the robot to detect, track, and respond to an object’s motion.
Additionally, higher speeds may introduce motion blur in the captured images, making it
more difficult for the vision system to accurately determine part location and trajectory.
Testing across multiple speeds helped evaluate how well the system could maintain
accuracy under more demanding, real-time constraints. Scanning height, the vertical
distance between the camera and the conveyor belt, was another critical parameter. Lower

scanning heights were expected to provide better image resolution and more detailed part
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contours, which can improve detection accuracy. However, it was anticipated that a lower
camera position would reduce the field of view and shorten the time the object remains
visible to the camera. Conversely, higher scanning positions were expected to increase
visibility across a wider portion of the conveyor, but potentially degrade image quality and
introduce greater uncertainty in part detection. Robot motion constraints, the maximum
speed and acceleration of the robotic arm, were also varied. These limits define how
quickly the robot can move to reach a predicted pickup position. Slower motion settings
were anticipated to offer smoother, more controlled movement but might reduce
responsiveness, particularly for fast-moving objects [7]. Finally, the number of velocity
estimation iterations—the number of camera frames used to calculate the object’s speed—
was modified to study its impact on motion prediction. It was expected that using more
iterations would yield a more reliable velocity estimate by averaging out random noise, but
they also lengthen the observation period and delay the robot’s response. Using fewer
iterations was anticipated to reduce latency but potentially lead to inaccurate or erratic
predictions due to limited data. Each of these parameters represents a real-world trade-off
between speed, accuracy, and system complexity. These parameters are shown in Table 1
below. They are explored in greater detail in Chapter I1I: Design Methodology, where their

implementation and impact on system performance are systematically analyzed.
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Table 1: Overview of System Parameters and Their Functional Roles

Key Parameter Description
Conveyor Belt Speed How fast the part moves, higher speeds
reduce tracking time and introduce motion
blur, lower speeds reduce accuracy.
Scanning Height The vertical distance between the camera
and the conveyor. Lower heights improve
image resolution but reduce visibility
time; higher heights increase field of view
but reduce image clarity.
Robot Motion Limits Refers to the robot’s maximum speed and
acceleration. Faster settings improve
responsiveness but may introduce
instability; slower settings offer smoother
movement but reduce reactivity.
Velocity Estimation Iterations Number of image frames used to estimate
part velocity. More iterations improve
accuracy through averaging but increase
response time; fewer iterations reduce
delay but risk noisy predictions.

Together, these tests allowed for a broad assessment of the system’s operational
envelope. The goal was not to optimize the system or create a comprehensive solution, but
rather to document its limitations and evaluate its feasibility for real-world applications. In
essence, the research seeks to answer the following overarching question: To what extent
can a single-camera, end-mounted robotic system perform dynamic pick-and-place tasks

in a cost-sensitive industrial setting, and what specific parameters govern its accuracy?

Three primary research objectives were defined to address this question:
1. Objective 1: Determine Achievable Accuracy of the System: Quantify the system’s
performance across various conditions using positional, angular, and repeatability

metrics.
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2. Objective 2: Numerically Compare System Accuracy to Industry
Standards: Identify how the system’s performance compares to industry standards
with regards to robotics.

3. Objective 3: Identify Practical Limitations of the Single-Camera Setup: Test and
evaluate the common approaches to pickup technique, and key system parameters

to discover how they affect pickup accuracy and reliability.

These objectives give rise to specific research questions: What is the reasonable
achievable accuracy for a single-camera, end-mounted robotic system? Which predictive
method results in the least positional and angular error? How does each variable (e.g.,
scanning height, conveyor speed, robot motion constraints) affect the system’s accuracy
and repeatability? Could such a system be viable for use in real-world industrial
applications with limited resources?

By generating controlled experimental data, this study contributes actionable insight to
researchers and engineers working to develop low-cost, flexible automation systems. The
findings help delineate the boundary between systems that are accurate enough for
deployment and those requiring further refinement or alternative architectures. The
remainder of this thesis provides a thorough literature review of related work in robotic
vision and motion planning (Chapter II), a detailed breakdown of the system design and
testing methodology (Chapter III), a presentation and analysis of experimental results
(Chapter 1V), and a concluding discussion on the implications of the findings and

opportunities for future development (Chapter V).
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CHAPTER II: Background and Literature Review

2.1 Introduction to Vision-Guided Robotic Systems

Vision-guided robotic systems have become a cornerstone of modern industrial
automation, particularly in applications involving pick-and-place operations within
dynamic environments. These systems combine robotic manipulators with visual sensing
and motion planning to enable object recognition, localization, and interaction in real time.
In traditional high-precision applications, such as automotive manufacturing,
semiconductor assembly, and pharmaceutical packaging, these systems utilize a variety of

visual and non-visual sensors to achieve robust performance across diverse conditions [1],

[2].

2.2 Advanced Multi-Sensor Robotic Systems
2.2.1 Multi-Camera and LiDAR Configurations

Contemporary high-accuracy systems often employ multi-camera networks, stereo
vision setups, or external LiDAR systems to provide rich spatial awareness. These
configurations support advanced features such as three-dimensional object tracking,
adaptive motion planning, and obstacle avoidance. For instance, Wang et al. implemented
a stereo camera array to reconstruct 3D environments for robotic arms, enabling complex
pick-and-place operations with sub-millimeter accuracy [8]. Similarly, Ge et al. integrated
a vision system with external LiDAR to facilitate object tracking and spatial coordination
in unpredictable environments [9]. These advanced systems, however, come at the cost of
increased complexity. They require sophisticated calibration procedures, synchronized

data acquisition pipelines, and custom software integration—most commonly through
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middleware platforms such as the Robot Operating System (ROS). The computational
overhead and financial cost of these setups limit their practical deployment in smaller-scale

or budget-constrained industrial environments.

2.2.2 Robot Operating System (ROS) Frameworks

ROS remains a dominant architecture for robotic development due to its modularity
and extensive open-source library. ROS-based systems benefit from a wide array of
prebuilt packages for motion planning, perception, and hardware interfacing. However,
some studies point out the significant overhead associated with deploying ROS, especially
in systems where rapid prototyping and minimal configuration are essential. Guo et al.
emphasize that ROS-based systems often require external computing units, careful
dependency management, and multi-node communication frameworks, complicating

deployment for applications intended to be mobile or quickly reconfigurable [10].

2.3 Robotic Motion Planning Algorithms
2.3.1 Rapidly-exploring Random Trees (RRT) and Artificial Potential Fields (APF)

A core technique in robotic motion planning is the Rapidly-exploring Random Tree
(RRT) algorithm and its optimized derivatives. RRT is particularly well-suited for high-
dimensional configuration spaces, enabling real-time planning in environments with
dynamic obstacles. Ding et al. proposed an APF-RRT hybrid model that integrates artificial
potential fields to guide tree growth while avoiding obstacles, significantly improving
convergence rates and motion efficiency in simulated environments [11]. Despite their

effectiveness, these algorithms require high processing power and are typically
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implemented alongside ROS or other high-level control platforms, making them unsuitable

for simpler, low-cost systems limited to a single vision input.

2.3.2 Reinforcement Learning Approaches

Reinforcement Learning (RL) has gained traction as a method for endowing robots
with adaptive, experience-driven control policies. RL models, including Deep Q-Networks
(DQNs), have been used in conjunction with multi-camera setups to train robots to respond
to unpredictable trajectories and perform dynamic interception. Zhang et al. developed a
vision-based RL system that improved grasping success in cluttered environments by 18%
after repeated training cycles [12]. Another study by Lin et al. demonstrated that RL-
enhanced trajectory planning increased interception rates by 22% compared to traditional
methods [13]. However, RL models demand large training datasets, extended training
periods, and substantial computing infrastructure, which poses challenges for

implementation in compact, cost-sensitive platforms like those explored in this study.

2.4 Simplified Single-Camera Systems
2.4.1 Monocular Vision Challenges and Benefits

By contrast, some recent efforts have investigated single-camera, end-effector-
mounted vision systems as an alternative to multi-sensor solutions. These monocular
systems reduce hardware costs and streamline calibration requirements, offering an
appealing solution for small-to-medium enterprises seeking robotic automation without the
burden of complex infrastructure. For instance, Qin et al. implemented a single-camera

system for object sorting on a conveyor, achieving a 92.5% classification success rate in a
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controlled environment [3]. Another study by Li et al. applied monocular vision to detect
and correct part alignment in basic assembly tasks, demonstrating consistent operation in
low-precision applications [4]. While effective in constrained settings, these systems
generally struggle with depth estimation and predictive motion tracking, particularly when

object velocity varies or when the robot must coordinate timing with moving targets.

2.4.2 Trajectory Prediction Models
Direct Kinematic Method

Trajectory prediction remains a major challenge for single-camera systems.
Traditional kinematic models assume linear, constant-velocity motion and rely on sampling
to forecast object trajectories. Zhang et al. explored a kinematic method that estimated
interception timing using vertical descent time and average object velocity, resulting in
average errors of 14.2 mm in planar positioning during controlled trials [14]. While
computationally efficient, this approach neglects simultaneous multi-axis motion and is

sensitive to speed variation.

Hypotenuse Method

To improve prediction accuracy, several researchers have proposed more
sophisticated interception strategies. Xu et al. explored a hypotenuse-based method that
considers the robot’s diagonal trajectory, including vertical and horizontal motion
components. Their approach solved a closed-form quadratic equation to estimate

interception time and achieved a 28% improvement in average pickup accuracy over
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simpler vertical descent models [15]. These findings highlight the benefits of accounting

for actual motion paths, especially in applications requiring dynamic interception.

Ambush Method

The Ambush Method represents an alternative interception strategy where the robot
positions itself ahead of the part’s projected path and waits for the object to arrive at a fixed
grasping position. Huang et al. applied this strategy to a conveyor-based sorting system
and reported consistent timing alignment with moving parts at up to 50 mm/s, achieving
successful pickup in 95% of trials under fixed velocity conditions [16]. However, this
method requires precise calibration of timing and placement to ensure consistent alignment.
Table 2 summarizes the key performance characteristics of each pickup method discussed
above. The performance values listed are representative examples taken from selected

studies in the literature and are not necessarily the best or worst reported values.

Table 2: Summary of Pickup Method Performance

Pickup Method Performance Notes

Direct 14.2 mm planar error | Tested by Zhang et al. using constant-
velocity parts; used a top-mounted camera
and controlled environment, no diagonal
motion modeling [14].

Hypotenuse 28% improvement Xu et al. used a diagonal motion prediction
over vertical descent with closed-form trajectory solutions with
models enhanced modeling [15].

Ambush 95% pickup success Huang et al. applied the method to fixed-
rate at 50 mm/s velocity parts on a controlled belt [16].
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2.5 Influence of System Parameters on Accuracy
2.5.1 Conveyor Speed Effects

Beyond motion prediction, several operational parameters influence the
performance of vision-guided robotic systems. Conveyor belt speed directly affects
observation windows and introduces variability in object tracking. According to Chen et
al., increasing belt speed from 30 mm/s to 90 mm/s resulted in a 37% rise in average
positional error in a monocular vision tracking system [5]. This emphasizes the difficulty

of real-time prediction under reduced observation intervals.

2.5.2 Scanning Height Impact

Camera scanning height also plays a significant role. Wang et al. evaluated object
recognition at different mounting heights and found that lower heights (600 mm) yielded
an average detection accuracy of 95.1%, compared to 84.3% at 800 mm due to reduced
pixel resolution and part size in the image frame [6]. This highlights the trade-off between

field of view and image quality.

2.5.3 Iterative Velocity Estimation

Another important factor is the number of iterations used for velocity estimation.
Hu et al. showed that increasing the number of sampling iterations from 5 to 10 improved
prediction accuracy by approximately 12%, but beyond 12 iterations, performance gains
diminished due to increased lag and system delay [17]. This demonstrates the importance

of balancing temporal sampling with system responsiveness.
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2.5.4 Robotic Motion Constraints

Finally, robot-specific parameters, including speed and acceleration limits,

constrain interception precision. Tang et al. investigated the impact of robot acceleration

on trajectory following accuracy and observed that limiting acceleration to below 750

mm/s? resulted in missed pickups in 20% of dynamic trials [7]. These findings underline

the importance of tuning motion constraints to match prediction models. Table 3 provides

a consolidated overview of the system parameter effects described above.

Table 3: Summary of Key System Parameter Performance

System Parameter

Performance

Notes

from 95.1% at 600 mm to
84.3% at 800 mm [6]

Conveyor Belt 37% increase in positional Chen et al. used a monocular vision

Speed error when increasing speed | system on a testbed with slower
from 30 to 90 mm/s [5] robot response [5].

Scanning Height Detection accuracy dropped | Wang et al. used high-res cameras

and controlled lighting [6].

Velocity Estimation
Iterations

12% improvement from 5 to
10 iterations; diminishing
returns after 12 [17]

Hu et al. implemented prediction in
MATLAB with pre-processed
frames, decreasing processing
times [17].

Robot Motion
Constraints

20% missed pickups when
acceleration limited below
750 mm/s? [7]

Tang et al. tested robotic arms in
high-speed industrial setups with
external sensing and more complex
part motion [7].

2.6 Summary and Identified Research Gap

While prior literature demonstrates that complex multi-sensor and multi-

algorithmic systems can achieve exceptional performance in dynamic pick-and-place tasks,

there is comparatively little work investigating the potential and limitations of minimalist

configurations. This thesis aims to address that gap by evaluating a single-camera, end-

mounted vision system integrated with an off-the-shelf six-axis robot. The results offer
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insight into the practical trade-offs between system simplicity and predictive accuracy,
particularly for small-scale manufacturers seeking affordable, modular automation

solutions.
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CHAPTER III: DESIGN METHODOLOGY

3.0 Research Objectives and Associated Methods

This study is guided by three primary research objectives, each designed to evaluate
different aspects of the single-camera robotic pick-and-place system and to support broader
conclusions about its industrial applicability. This section outlines each objective, followed

by a clear description of the corresponding methodology used to address it.

Objective 1: Determine Maximum Achievable Accuracy

To address this objective, the system was subjected to a series of tests using three
distinct predictive pickup strategies: the Direct Kinematic Method, the Hypotenuse
Method, and the Ambush Method. Each method represents a different approach to
predicting the part's future location based on visual tracking and robot motion planning.
System accuracy was quantified by comparing the predicted pickup position and
orientation of a moving part to its actual position and orientation at the time of attempted
grasp. The evaluation metrics included positional error in the x and y axes (in millimeters)
and rotational error u (in degrees). Each method was tested in controlled conditions to

identify the most accurate configuration.

Objective 2: Numerically Compare System Accuracy to Industry Standards

This objective involved comparing the accuracy achieved in experimental trials to
performance benchmarks reported in relevant literature and industry data. The evaluation
criteria included average positional errors (x and y), rotational errors (u), and reliability

across multiple trials (expressed as a success rate). Results from this study were analyzed

27



in relation to accuracy levels commonly found in more complex vision-guided systems,

allowing for a practical comparison between low-cost and high-end solutions.

Objective 3: Identify Practical Limitations of the Single-Camera Setup

To explore the inherent limitations of this system, additional variables were tested
independently. These included conveyor belt speed, scanning height, velocity estimation
iteration count, and robot motion limits (maximum speed and acceleration). Each of these
parameters represents a potential constraint in real-world deployment, and varying them
helped uncover the boundaries of the system's reliable performance. Methodologically, this
involved isolating one variable at a time, holding others constant, and measuring the

resulting changes in positional and rotational accuracy.

With these objectives defined and the methodological alignment established, the
following sections provide a detailed description of the system's design and the

experimental procedures used in this study.

3.1 System Development and Architecture

The robotic platform developed for this study was designed to emulate a realistic
industrial pick-and-place cell, but with a focus on simplicity, modularity, and cost-
effectiveness. The goal was to assess the accuracy of a vision-guided robot system that uses
only one camera mounted directly on the robotic end-effector—a configuration that

dramatically reduces system complexity.
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To maintain accessibility and reproducibility, only off-the-shelf hardware
components were used. The robotic arm chosen was the Epson VT6, a six-axis industrial
manipulator known for its compact size and sufficient precision for light assembly tasks
[19]. This arm was outfitted with an OnRobot 2FG7 parallel gripper [20], selected for its
mechanical reliability and suitability for small-to-medium parts. A 5.0 Megapixel Epson
GigE industrial camera [21] was securely mounted to the front of the gripper, ensuring that
all vision data was collected from the same point as the pickup action. This eliminated the
need for external cameras or multiple coordinate transformations. System control and
programming were managed through the Epson RC+ 7.0 development environment [22],
which integrates both vision processing and motion programming. This platform was ideal
for minimizing software overhead while maintaining full control of all system components,

which are shown in Table 1 below, and the setup schematic is shown in Fig. 3.

Table 4: Setup Components

Device Parameter
Robotic Arm Six-axis
Camera Monochromatic, 2560

x 1920 Resolution, 14
fps capture speed

End Effector: Gripper | Two finger parallel, 18
to 55 mm grip length

Control Software Built-in manufacturer
software in BASIC

Conveyor Belt 0 to 400 mm/s linear
speed

Two main processes were developed within the software environment:
e VisionTask Function: Responsible for continuously capturing images of the

conveyor and processing them to detect the part's position and orientation. The
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vision tools included in Epson RC+ were used to compare each frame to a calibrated
template of the part, allowing extraction of the part's center position in x and y, as
well as its angular orientation (u).

e RobotMotionControl Function: This function controlled the motion of the robot
based on visual input. It executed tracking, velocity estimation, and predictive
calculation. The robot would move in synchronization with the part along the
conveyor, maintaining a fixed scanning height until the pickup prediction was

complete.

During operation, the robot iteratively collected position data from the VisionTask and
stored it in dedicated arrays. By analyzing the time stamps between frames, it calculated
instantaneous velocities in x and y. After a specified number of iterations, the robot
computed the average velocity and used one of the three predictive methods to determine
where the part would be by the time the robot reached it. To reduce early noise, the first
three position readings in each trial were excluded from velocity averaging. This helped
account for mechanical lag or error during initial robot movement. Importantly, the image
processing was kept intentionally simple to reflect a realistic industrial scenario where
high-performance systems may not be available. No machine learning or advanced
computer vision algorithms were used. This ensured that the evaluation was focused solely

on hardware constraints and basic predictive logic.
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3.2 Experimental Testing Methodology

After constructing the physical and software infrastructure, testing proceeded to
systematically evaluate the system's performance under a variety of controlled conditions.
Each test was designed to isolate the effects of a specific variable while keeping others
constant. The baseline configuration was selected based on practical observations during
system development. This configuration offered reliable performance without being overly
optimized. The key baseline values are summarized in Table 5. Each variable under study
was varied independently while others were held at baseline. This allowed for clean
attribution of performance changes to the variable being tested. A visual overview of the
experimental setup is shown in Fig. 3., and Fig. 4. This includes the Epson VT6 robotic
arm, the conveyor system, the gripper, and the end-mounted camera used throughout
testing. Baseline values for each experimental variable were selected based on prior
research findings, intuition, and practical engineering judgment. For most variables (such
as conveyor speed, scanning height, velocity estimation iterations, and robot motion
constraints), baseline settings were established before testing and were held constant
throughout testing, even if subsequent results indicated that alternative settings might offer
improved performance. However, for the pickup method variable, all methods were
initially tested, and the Hypotenuse Method was selected as the baseline for subsequent
experiments based on its superior performance relative to the other tested approaches. This
selection helped ensure that the system’s pickup strategy did not artificially limit the

performance observed when varying other parameters.
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Table 5: Key Variable Baseline Values

Key Variable Baseline
Pickup Method Hypotenuse
Iteration Count 9
Scanning Height 770 mm
Conveyor Speed 50 mm/s
Speed Limit 1000 mm/s
Acceleration Limit 1000 mm/s?

Z-axis

u-rotation

X-aXis

y-axis

Part \
- _;]- Pickup Hcight
I Conveyor Belt I

Figure 3: Diagram of Experimental Setup. Important components and variables are

listed, such as the camera, gripper, part, conveyor belt, scanning and pickup height,
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Figure 4: Experimental Setup. This photo shows the setup for all testing and

development, all key components are shown.

3.2.1 Predictive Pickup Methods

Three pickup strategies were developed to compare how different motion
assumptions affected system accuracy:
Method 1 — Direct Kinematic Approach:

The first method assumed that the primary motion limiting factor was the robot’s

vertical descent to the pickup height. The robot calculated the time required to traverse the
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vertical distance, H - Hpjcxyp, using known acceleration @, and maximum velocity R,

following a trapezoidal motion profile:

T=E+(H_Hpickup)_R_2 {
a R aR (1)

Where:

* H is the scanning height (shown in Fig. 3. as “Scanning Height”)

* Hpickup 1s the pickup height (shown in Fig. 3. as “Pickup Height”)
* R is the maximum robot velocity

* g 1s the robot’s maximum acceleration

This equation was derived using simple kinematic motion with the set acceleration and
maximum velocity of the robot. The predicted pickup position in the x and y directions,

Xpreda and Ypreq rESpectively, was calculated as:

Xprea = X0+ VT, Yprea = Yo + 0T "
Where:
* xo0 / yo are the last known position of the part, as detected by the vision system
* v« /vy are the estimated velocities of the part in each direction
* T'is the estimated time required for the end effector to reach the predicted pickup

location.
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Method 2 — Hypotenuse-Based Trajectory Model:
This refined method accounted for the fact that the robot moves along a diagonal
(hypotenuse) path, rather than a purely vertical descent. The interception time T was

calculated by solving the following quadratic:

R?\?
<RT - 7) = H2 + (x + 1% + (yo + 1, T)° (3)

This equation was derived by modeling the robot’s motion along the hypotenuse of a right
triangle formed between the vertical scanning height offset and the predicted horizontal
distance of the part. By treating the diagonal path as a single motion segment, the solution
incorporates both spatial geometry and the trapezoidal motion profile described in Method
1 to estimate the total travel time. The quadratic was solved for T, yielding a more precise

estimate of the interception time considering the true 3D path traveled.

—(2Bxovy + 2By,vy) + \/(ZBxva + ZByovy)2 —4(B? — v} —v})(A> —H? — x5 — y?)

r 2(B? — v —v}) )

Method 3 — Ambush (Wait-at-Location) Strategy:

The third method altered the pickup behavior entirely. Instead of predicting a
moving interception point, the robot moved directly to a pre-determined ambush distance,
X ambush A4 Yambusn, ahead of the part’s trajectory. Upon arrival, the robot waited until

the part arrived under the gripper, then executed the pickup:
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Xambush = Xo T vfoixedJ Yambush = Yo + vnyixed (5)

Where Tfixeq Was a predefined wait time optimized for system response. This approach

minimized error introduced by incorrect velocity predictions or sudden variations in part

speed.

3.2.2 Additional Variable Changes

Beyond pickup strategies, other variables were tested to assess practical system

limitations:

Iteration Count: Number of scans used for velocity averaging. Tested from 8 to 14
iterations. Upper and lower limits were chosen due to performance drop off—lower
values led to high noise; higher values increased delay and risk of missing the part.
Scanning Height: Distance between the camera and conveyor. Tested from 650 mm
to 800 mm in 30 mm increments. Lower heights improved image quality but
shortened observation window. Higher heights offered more coverage but less
detail.

Conveyor Speed: Set between ~5% and ~20% of max speed. Higher speeds made
it difficult for the robot to intercept. Lower speeds caused motor instability.

Robot Motion Limits: Robot max speed and acceleration were varied from 500 to
2000 mm/s and mm/s?, in increments of 500. At low values, the robot could not

reach the pickup point in time. At high values, system accuracy decreased due to
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mechanical limitations. Each of these variables was tested using the same pickup

protocol described in the next section.

3.2.3 General Testing Procedure

Each trial began by placing a test part on the conveyor at a randomized orientation.
The system began tracking the part using its vision tools and performed several scan
iterations to collect position and velocity data. Once enough data was collected, the robot
computed a predicted pickup point using the selected method. It then moved to this location
and executed the pickup maneuver. The predicted pickup position for each trial was
generated by the vision-processing algorithm and displayed to the user through the
program’s interface. The x, y, and u coordinates provided by the system were recorded . At
the moment of pickup, the conveyor was stopped, and the actual part position was recorded.
To record the actual part position, the robot was manually jogged using the Epson RC+
interface until the center of the gripper was visually aligned with the center of the part.
Once aligned, the robot’s displayed position values were recorded directly from the control
panel, providing the ground truth x, y, and u coordinates for each trial. Positional accuracy
was defined as the absolute difference between predicted and actual part locations in x and
y (in mm). Rotational accuracy was the angular error in u (in degrees). Each configuration
was tested over 10 trials. Data was averaged, and standard deviations were calculated to
assess consistency. Average data represents the average of the x and y positional errors
only. Rotational error (u) is excluded from this calculation to ensure consistent unit

handling and reflect pure displacement accuracy. This procedure was repeated for every
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pickup method and every variable range. This ensured a fair and consistent comparison

across all test conditions.

3.2.4 Data Processing and Outlier Removal

During the experimental testing described above, several individual trials across
multiple configurations produced anomalous data points that deviated significantly from
the rest of the collected values. These outliers—characterized by unusually high or low
error measurements—risked skewing the averages, variances, and graphical
representations of system accuracy. To improve the clarity, consistency, and
interpretability of the results, an outlier detection and removal process was implemented
prior to final data analysis. The method selected for outlier identification was the box plot
method, a statistical approach commonly used for identifying outliers in small or non-
normally distributed datasets. A box plot distributes the data based on quarters. The key
component used in this analysis is the interquartile range (IQR), which is calculated as the
difference between the third quartile (Q3) and the first quartile (Q1). This range captures
the middle 50% of the data. Any point that lies below Q1 minus 1.5 times the IQR or above
Q3 plus 1.5 times the IQR is flagged as a potential outlier. This method is particularly
effective for the dataset used in this study, where each configuration included only 10 trials
and the data distributions could not be assumed to be Gaussian. Across the full dataset of
230 trials, 47 trials were identified and excluded as outliers based on the established
criteria. This corresponds to approximately 2.25 outliers per configuration, with each
configuration consisting of 10 trials. While some configurations exhibited no outliers, most

configurations saw between two and three outliers removed. For each tested
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configuration—specifically, each pickup method, each value of scanning height, conveyor
belt speed, velocity estimation iteration count, and robot motion constraints—the full set
of ten trial results was first copied into a new analysis sheet to preserve the raw data
(available in the Appendix). The box plot method was then applied independently to the x,
y, and u error values associated with each configuration. Any data point falling outside the
calculated IQR bounds for a given error axis was excluded from final calculations of
average, minimum, maximum, and standard deviation, as well as the plots. This allowed
the analysis to focus on consistent system behavior while minimizing the influence of rare
anomalies.

Additionally, to compare the error across variables with different units (such as
distance in millimeters and rotation in degrees), a normalized error metric was employed.
The normalized error is calculated by dividing the error in each direction (x, y, and u) by
the maximum observed error value for that specific variable across all tests. This results in
a unitless value between 0 and 1, enabling direct comparison. The normalized error for
each test case is then computed as the average of the normalized x, y, and u errors. This
approach is necessary because averaging errors with differing units directly would yield
misleading results. Normalizing each error by its maximum observed value allows for the
aggregation of these metrics while maintaining proportionality and comparability. The
comparison of normalized error between test configurations was important for evaluating

the overall accuracy of the system, as necessary for Objective 1.
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CHAPTER IV: RESULTS

4.0 Results by Research Objectives

This chapter presents the results of the experimental evaluation of the vision-guided
robotic system, organized around the three primary research objectives outlined in Chapter
I and restated in Chapter III. This structure is intended to ensure that the experimental
findings are interpreted in the context of the original goals of the study. Each section is
dedicated to one objective and includes the data, observations, and analysis that directly
address the corresponding research question. It is important to note that no data was deleted
from the project archive. All original values, including those classified as outliers, have
been retained and are included in the appendix. The results presented in Chapter IV are
based exclusively on the filtered dataset, with all statistical metrics (including average,
range, and standard deviation) calculated from the outlier-excluded trials.

The first research objective was to determine the maximum achievable accuracy of
the system using only a single, end-mounted camera as the sole sensor. This objective was
pursued by evaluating the performance of three unique predictive pickup methodologies
under controlled conditions. Each method—Direct Kinematic, Hypotenuse, and Ambush—
was subjected to a consistent testing protocol, and the accuracy was quantified using three
key metrics: the difference between the predicted and actual position in the x direction, the
difference in the y direction, and the rotational error u in degrees. These results are
thoroughly analyzed in Section 4.1. By examining each of these predictive approaches
under identical conditions, this objective aimed to establish a baseline understanding of the
system’s optimal performance capabilities, while also highlighting the relative strengths

and weaknesses of each motion model.
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The second objective was to compare the system’s accuracy with relevant industry
benchmarks and published results from other vision-guided robotic systems. While this
study does not aim to create a production-ready system that competes directly with
advanced multi-sensor robotic platforms, a key goal was to assess how a simplified setup
performs in relation to the broader landscape of industrial automation. Section 4.2 explores
this objective by drawing comparisons between the positional and angular accuracy values
achieved during testing and the typical tolerances or performance metrics reported in
existing literature. These comparisons are intended to contextualize the system’s
performance, not as a direct competitor to high-end systems, but as a cost-effective solution
for environments where ultra-high precision may not be necessary, and where flexibility,
affordability, and ease of deployment are prioritized.

The third and final objective was to identify practical limitations of a single-camera
vision-guided robotic system under realistic dynamic conditions. To accomplish this, a
series of additional tests were conducted to assess the impact of various independent system
parameters. These variables—scanning height, conveyor belt speed, the number of tracking
iterations, and the robot’s acceleration and velocity limits—were methodically varied, with
all other conditions held constant. The goal was to isolate each variable’s contribution to
the overall accuracy of the system and, in doing so, reveal the most critical constraints
imposed by the simplified design. Section 4.3 presents these results, focusing specifically
on observed performance drops, failure modes, and outlier behavior. This analysis also
identifies which parameters were most sensitive to change and which ones offered the most

improvement when tuned correctly.
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Across all experiments, a consistent evaluation framework was applied. Each trial
began with the robot tracking a part moving at a steady speed along a linear conveyor belt,
calculating the part’s instantaneous velocity using a fixed number of scan iterations, and
then executing one of the three pickup strategies. The predicted pickup location—both in
terms of position and orientation—was then compared to the actual location of the part at
the time of the attempted grasp. Absolute errors were recorded for each trial and aggregated
across multiple runs to produce meaningful average values, standard deviations, and
observed ranges. In addition to these quantitative results, notable failure modes and edge-
case behaviors were recorded, including trials where the robot failed to complete the pickup
due to incorrect predictions or timing misalignments.

By organizing the results around the core research objectives, this chapter ensures
that each experimental outcome directly contributes to answering the overarching research
questions posed in this study. The following sections detail these findings, beginning with
the evaluation of the three predictive pickup methods and their corresponding performance

metrics under baseline conditions.

4 .1 Maximum Achievable Accuracy

This section presents the measured performance of the robotic system across the
three tested predictive pickup methodologies: the Direct Kinematic Method, the
Hypotenuse-Based Trajectory method, and the Ambush Method. All three methods were
evaluated under identical baseline conditions, which included a fixed scanning height of
770 mm, a conveyor belt speed of 50 mm/s, a robot velocity limit of 1000 mm/s, an

acceleration limit of 1000 mm/s?, and a velocity estimation iteration count of 9. These
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parameters were chosen based on iterative refinement during the development phase and
represent a stable configuration for evaluating and comparing predictive pickup accuracy
across all three strategies. Each method was subjected to ten independent trials. For each
trial, the part's actual position at the time of the robotic gripper's attempted pickup was
compared to the system's predicted location. The system’s prediction was compared against
the actual observed location of the part to determine the error in three components: linear
displacement in the x and y directions, and angular displacement about the u-axis. These
three values represent the difference between the predicted and actual position and
orientation of the part at the time of pickup. Figure 5 provides a visual representation of
these error components, illustrating a top-down view of the conveyor belt system. As the
part moves along the belt, the vision system predicts its future location and orientation. The
diagram highlights the discrepancy between this predicted location and the part’s actual
position when the robot attempts to pick it up, with each error component labeled
accordingly. In the error visualization shown in Fig. 5, the error components are denoted
as Ex, Ey, and Eu, representing the errors in the x direction, y direction, and rotational
orientation, respectively. Moving forward in the results, these components are collectively
referred to as ‘displacement inaccuracy,” where Ex corresponds to error in x, Ey to error in
y, and Eu to rotational error. These variables are plotted as the dependent variables on the
vertical axes of the subsequent results graphs, consistently reflecting the measured

deviation between predicted and actual pickup locations.
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y Displacement Inaccuracy:

E, = Error in y: Difference between actual and predicted location in y direction
u E, = Error in x: Difference between actual and predicted location in x direction
X

E, = Error in u: Difference in rotation between actual and predicted rotation

Conveyor Belt . ]
. Part Predicted Location e

Direction of Travel

h . Part Actual Location
Part Starting Location

Figure S: Error Visualization Diagram. This diagram shows a top-down view of the
conveyor belt, with the part movement and predicted/actual locations. The error, or

difference between these two locations, is depicted as well.

4.1.1 Direct Kinematic Method

The Direct Kinematic Method calculated interception time based on the robot’s
vertical descent to the pickup plane, assuming trapezoidal motion and constant part
velocity. This method, being the simplest of the three, served as a baseline model and did
not take into account the robot’s full diagonal travel path or its multi-axis motion profile.
Instead, the time to intercept was computed solely from the known scanning height and the
robot’s speed and acceleration limits, using a vertical displacement equation.

In terms of x direction positional accuracy, the Direct Kinematic Method produced
an average error of 40.11 mm. The minimum error recorded across trials was 31.90 mm,
while the maximum reached 48.00 mm, indicating considerable variability in prediction
accuracy. The high error values in x suggest that relying solely on vertical descent time for
predictive modeling is insufficient for accurate interception, particularly because the

horizontal motion component of the robot’s trajectory is ignored. The y direction positional
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accuracy, however, was better. The average error in y was 30.14 mm, with recorded errors
ranging from 20.80 mm to 41.00 mm.

Rotationally, the system achieved an average angular error of 6.77° using this
method. The lowest recorded error was 5.40°, while the maximum reached 8.10°. Although
this method did not include any explicit strategy for minimizing rotational error beyond
standard vision-based alignment, the rotational results were reasonably consistent, albeit
slightly higher than those recorded for the Hypotenuse Method.

The average error across x and y only, excluding rotational error, was 35.13 mm.
Despite its simplicity and limitations, the method was able to successfully complete all ten
trials without failure and maintained a consistent performance profile, with an average

deviation of 2.27 mm.

4.1.2 Hypotenuse-Based Trajectory Method

The Hypotenuse Method estimated interception time by considering the full
diagonal travel path between the scanning height and the predicted pickup location. This
method modeled the motion along the hypotenuse of a right triangle formed between the
vertical scanning offset and the planar distance from the camera to the part. By using the
robot’s velocity and acceleration parameters in conjunction with the predicted position, the
required time to intercept was calculated using a trapezoidal motion profile.

This method significantly improved positional accuracy compared to the Direct
Kinematic Method. The average error in the x direction was 14.57 mm, with values ranging
from 6.40 mm to 22.90 mm. In the y direction, the average error was 31.46 mm, with a

minimum of 26.60 mm and a maximum of 37.60 mm. While the y error remained relatively
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high, the x error was substantially reduced, suggesting that the Hypotenuse Method’s
improved prediction model more accurately accounted for the robot’s actual motion
characteristics.

The average angular error was 5.91°, with a minimum of 5.10° and a maximum of
6.60°, making it the best-performing method rotationally. The system maintained
consistent alignment performance without requiring separate rotational modeling or
compensation. The average positional error in the x and y directions was 23.01 mm, making
this method more accurate than the previous. All ten trials were completed successfully,

and the results showed a relatively tight spread, with an average deviation of 2.07 mm.

4.1.3 Ambush Method

The Ambush Method used a static interception time set slightly shorter than the
average travel time predicted by the Hypotenuse Method. Instead of calculating a precise
moment of interception, this method relied on triggering the pickup action earlier than
expected, allowing the robot to “wait” for the part to arrive. This approach avoided motion
prediction altogether and instead prioritized timing safety, which is sometimes favored in
high-speed systems with variable part trajectories.

The positional accuracy in the x direction was lower than the other methods, with
an average error of 43.28 mm and a range between 29.30 mm and 58.80 mm. The y
direction error was lower than x, with an average of 21.12 mm and a range from 14.30 mm
to 27.90 mm. This imbalance indicates that the method may have performed better at
estimating lateral position due to timing alignment but suffered along the robot’s primary

movement axis.
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The average angular error was 6.56°, with a minimum of 5.90° and a maximum of
7.30°, comparable to the other two methods. Although the system did not rely on real-time
motion modeling, the part’s consistent placement and conveyor speed helped maintain
rotational alignment within a tolerable range.

The average positional error across x and y was 32.20 mm, placing this method
between the Hypotenuse and Direct Kinematic methods in terms of accuracy. All ten trials
were successful, and the average deviation was 3.24 mm, slightly higher than the other

methods and reflecting a broader spread in performance.

4.1.4 Comparative Summary of Pickup Methods

To allow a consolidated view of each method's performance, Table 6 and Fig. 6.
summarize the average error values recorded across the three tested predictive strategies.
In Table 6 and Fig. 6., the Average data represents the average of the x and y positional
errors only. Rotational error (u) is excluded from this calculation to ensure consistent unit
handling and reflect pure displacement accuracy. Detection rate indicates how many of the
ten trials resulted in successful part identification by the vision system. While detection
was successful in all trials for pickup method testing, later experiments occasionally

experienced detection failures.

Table 6: Component Error and Detection

Method Average X AverageY | Average U Average Detection
Error (imm) | Error (mm) | Error (°) (mm) Rate
Kinematic | 40.11 30.14 6.77 35.13 10/10
Hypotenuse | 14.57 31.46 591 23.01 10/10
Ambush 43.28 21.12 6.56 32.20 10/10
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Figure 6: Displacement Inaccuracy vs. Pickup Method

The data demonstrates clear trade-offs between the methods. The Hypotenuse
Method offered the best accuracy in the x direction and rotational alignment but performed
the worst in y direction positioning. The Ambush Method achieved the best average y
accuracy and maintained a moderate x error, though it suffered in rotational precision. The
Direct Kinematic Method, although the least sophisticated and most limited in terms of
predictive modeling, offered reasonably balanced performance in y and u, but exhibited the
largest x direction error. All three methods could complete all ten trials without failure,
demonstrating a fundamental level of robustness and stability under consistent

experimental conditions. However, the variation in performance metrics reveals that the
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choice of predictive method significantly influences both accuracy and consistency,
depending on the axis of interest and the specific goals of the application.

Beyond just the average error values, the standard deviation of each error
component adds an important dimension to the system’s characterization—namely, how
reliably each method performs from trial to trial. A method with a low average error but
high variability may not be desirable in situations requiring consistent output. Conversely,
a method with moderate average error but tight consistency might be better suited for
operations where predictability and repeatability are critical.

The Direct Kinematic Method exhibited the lowest standard deviation in X error,
measured at 3.06 mm. This is notable given that its average x error was the highest of the
three methods, indicating that while it consistently missed the target position in the x-
direction, it did so in a predictable manner. Additionally, its y error standard deviation was
3.32 mm, which falls within a reasonable range, and its u error standard deviation of 0.42°
was the lowest among the methods. This indicates that the method was particularly strong
in repeatable rotational positioning, which is impressive considering that it lacked any
sophisticated rotational optimization.

The Hypotenuse Method, while the most accurate overall in terms of average x and
u errors, showed slightly higher variability in its x direction results with a standard
deviation of 4.35 mm. Still, this value reflects consistent x position predictions across all
trials. More impressively, this method demonstrated the lowest y error standard deviation
at 1.03 mm, revealing an ability to maintain extremely tight lateral positioning accuracy
even though its average y-error was higher than desired. In rotational accuracy, the method

also performed well, with a u error standard deviation of 0.84°, confirming relatively stable
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orientation alignment throughout the testing sequence. These characteristics make the
Hypotenuse Method not only highly accurate but also consistent in two of the three tested
dimensions.

The Ambush Method demonstrated mixed results. It had a moderate x error
standard deviation of 3.41 mm, which is better than the Hypotenuse Method but slightly
worse than the Direct Kinematic Method. However, its y error standard deviation was the
highest at 4.90 mm, suggesting that its excellent average y accuracy (only 0.63 mm) came
with a trade-off in trial-to-trial repeatability. This method also showed the highest standard
deviation in u, at 1.41°, reflecting greater inconsistency in achieving precise gripper
orientation during the pickup.

Together, these standard deviation metrics offer a more comprehensive view of how
each method performs—not only in terms of hitting the target on average, but also how
reliably that performance is repeated across multiple trials. The Direct Kinematic Method
stands out for its consistent but misaligned x and u predictions. The Hypotenuse Method
provides strong all-around consistency, especially in lateral and rotational dimensions, with
some systematic offset in y. The Ambush Method, while simple and strong in average y

performance, introduces more unpredictability, particularly in rotational alignment.
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Figure 7: Normalized Error for the Pickup Methods

In addition to evaluating each individual axis, a normalized error analysis was
performed to enable a unitless comparison across all three motion components, x, y, and
rotational error (u). Each error value was normalized by dividing it by the maximum
observed error for that axis across all three methods. The normalized x, y, and u values
were then averaged to yield a single composite score between 0 and 1 for each method,
where lower values represent better overall performance.

As shown in Fig. 7., the Hypotenuse Method achieved the lowest normalized error
at 0.7368, followed by the Ambush Method at 0.8801, and the Direct Kinematic Method
at 0.9616. These results reinforce the earlier findings that the Hypotenuse Method offers
the most balanced and consistently accurate performance when considering all three axes

of positioning.

51



4.2 Comparison of System Accuracy to Industry Standards

To evaluate the viability of a vision-guided, single-camera robotic system in a
dynamic pick-and-place setting, the accuracy data collected through experimentation must
be analyzed in the context of established industry standards. This section compares the
system’s performance across its three primary pickup configurations—focusing on
positional accuracy in the x and y directions, as well as rotational accuracy—against
commonly cited benchmarks for commercial robotic arms used in similar pick-and-place
tasks.

In high-performance industrial systems employing external sensor networks and
custom calibration routines, average positional accuracy in planar x-y space is often
maintained within +1 mm to +5 mm under ideal conditions. For rotational accuracy, these
systems typically demonstrate deviations of less than +1° in U-axis orientation when
operating in structured environments with high-resolution 3D cameras or external feedback
systems [1], [2].

By contrast, the simplified system presented in this study used only a single end-
effector-mounted camera without external sensing, calibration grids, or 3D feedback.
Under these constraints, the most accurate configuration tested—using the Hypotenuse
Method—produced an average positional error of 14.57 mm in the X-direction and 31.46
mm in the Y-direction. The rotational error for this configuration was 5.91°.

These results represent a clear deviation from industry best-in-class standards.
Specifically, the x direction error exceeds the upper threshold of industry-grade planar
accuracy by nearly 10 mm. The y direction error is even more substantial, overshooting the

+5 mm threshold by more than 26 mm. In rotational alignment, the system’s 5.91° average
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deviation is considerably larger than the sub-degree tolerance generally expected in
precision-driven tasks. This indicates that while the system can effectively track and
intercept moving parts, it lacks the fine-grained accuracy necessary for ultra-precise
applications such as electronics assembly or high-speed sorting where part misalignment
of even a few millimeters can cause a failure in downstream operations.

Still, when placed in the context of mid-tier industrial systems or low-cost
automation setups, these figures are not without merit. For example, some commercially
available collaborative robots intended for flexible assembly lines advertise positional
repeatability in the range of £0.1 mm to =1 mm, but these numbers are often quoted under
static conditions without real-time vision tracking or dynamic part movement. When
dynamic factors are introduced—such as part velocity, single-camera tracking delays, and
robotic motion lag—systems operating with positional errors between 10 mm and 30 mm
may still be considered viable for operations where exact placement is not critical, such as
bin picking, loose sorting, or basic part transfer [2], [8].

When comparing all three methods, the Direct Kinematic Method had an average x
error of 40.11 mm, a y error of 30.14 mm, and a u error of 6.77°. The Ambush Method
produced a somewhat more balanced profile: an x error of 43.28 mm, a y error of 21.12
mm, and a u error of 6.56°. Based on the combined average positional error (x and y), the
Direct Kinematic Method had a total error of 35.13 mm, the Ambush Method measured
32.20 mm, and the Hypotenuse Method achieved the lowest at 23.01 mm.

To further support this comparison, a normalized error metric was also applied to

account for differences in units across X, y, and u axes. The Hypotenuse Method again
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performed best, with the lowest normalized error of 0.7368, reinforcing its advantage as
the most consistently accurate configuration overall.

These results reveal that while none of the methods met the stringent thresholds of
high-end industrial accuracy, they do exhibit operational viability under less demanding
conditions.

Rotationally, the system underperformed relative to industry standards in every
configuration. With u errors consistently ranging between 5.91° and 6.77°, the gap remains
substantial when compared to the <I1° angular tolerance expected in high-precision
orientation tasks. The best result—35.91° from the Hypotenuse Method—still falls well
outside the range required for many modern robotic applications that demand strict
alignment of components.

While raw positional accuracy was the central metric under review, it is important
to acknowledge that high standard deviation in any method would imply greater
unpredictability in the system’s real-world performance. For instance, although the
Hypotenuse Method had the best average error values overall, its relatively modest
standard deviations—4.35 mm in x and 0.84° in u—suggest consistent and reliable
performance within those boundaries. By contrast, the Direct Kinematic and Ambush
Methods exhibited higher standard deviations in x, making them less predictable even in
scenarios where their mean accuracy might seem acceptable.

In summary, the results demonstrate that under ideal conditions, the system is
capable of moderately consistent performance in loosely constrained scenarios. In practical
terms, this could translate to successful deployment in small-scale operations where

placement precision is less critical—such as sorting similarly sized objects, removing parts
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from conveyor belts for quality inspection, or assisting human operators in semi-structured
environments [8], [3], [4]. However, the clear margin by which these results fall short of
industrial standards reaffirms that this type of minimalist single-camera system may be best
suited for low-cost, low-precision automation environments. Table 7 summarizes the

comparison between the best results achieved in this study and typical industry standards,

[11, [2], [8].

Table 7: Standards Comparison

Metric Best Result Industry Standard Comparison
X Error 14.57 mm 5 mm ~2.7x higher
Y Error 21.12 mm 5 mm Within range
Rotational Error 5.91° 1° ~5x higher

4.3 Practical Limitations Identified

This section addresses the third primary research objective: to identify practical
limitations inherent to a vision-based robotic system utilizing a single, end-mounted
camera. Each experimental variable—scanning height, conveyor belt speed, velocity
estimation iteration count, and robot motion constraints—was tested independently while
holding other system parameters at baseline to isolate and quantify the impact of that
variable on pickup accuracy. The metrics evaluated in each case were absolute positional
error in the x and y directions (in millimeters) and rotational error in u (in degrees). These
errors reflect the deviation between the system’s predicted pickup location and the actual
location of the part at the time of interception. The practical limitations discussed below

are based solely on the outcomes of the recorded trials.
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4.3.1 Scanning Height

The scanning height—the vertical distance between the mounted camera and the
conveyor belt—was varied across six configurations: 650 mm, 680 mm, 710 mm, 740 mm,
770 mm (baseline), and 800 mm. Changes in scanning height impacted both image
resolution and the size of the observable field, and consequently influenced the reliability
of part detection, velocity estimation, and final pickup accuracy.

At the lowest tested height of 650 mm, the system completed 8 out of 10 trials
successfully. The x direction error averaged 43.15 mm, with a minimum of 4.04 mm and a
maximum of 157.49 mm—the highest recorded in any scanning height configuration. Error
in y was more stable, averaging 4.13 mm with a range from 0 mm to 10.87 mm, while
rotational error averaged 8.37°, ranging from 6.71° to 9.65°. The average positional error
in x and y was 23.64 mm. These results indicate inconsistent positional tracking at close
range.

At 680 mm, the success rate improved to 10 out of 10, with an average x error of
38.95 mm and bounds between 18.24 mm and 65.39 mm. y error also increased slightly to
7.12 mm (range: 0 mm to 23.82 mm), while u error averaged 7.58°, showing improved
rotational stability over the previous height. The combined x and y error was 23.04 mm.
Although x error remained relatively high, the narrower rotational range indicated more
consistent angle alignment.

The 710 mm height yielded stronger results, again with 10/10 successful trials.
Error in x fell to an average of 16.45 mm, with a minimum of 0 mm and a maximum of

29.37 mm. Y error showed a marked improvement, dropping to 0.08 mm on average and
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remaining within 0.00 mm to 0.30 mm. The error in u averaged 7.42°, ranging from 7.14°
to 7.65°. The average positional error in x and y was 8.26 mm. These results reflected one
of the most consistent and accurate sets, particularly in y direction positioning.

At 740 mm, performance continued to improve across all metrics. The x error
averaged 21.42 mm, ranging between 0.00 mm and 42.72 mm. y error remained relatively
low at 2.85 mm, with a range from 0.00 mm to 6.86 mm. The u error averaged 7.12°, with
a minimum of 4.83° and a maximum of 9.74°. The combined x and y error was 12.13 mm.
This configuration provided one of the most balanced performances, demonstrating low
deviation across all parameters.

The 770 mm scanning height—the baseline configuration—delivered a strong and
reliable set of results. All 10 trials were successful, and the x error averaged 14.57 mm,
ranging from 2.60 mm to 26.10 mm. The error in y, however, increased significantly to
31.46 mm, ranging from 27.00 mm to 33.40 mm, the highest average y error across all
configurations. Despite the higher y deviation, rotational accuracy improved with a u error
average of 5.91°, ranging from 2.90° to 8.10°, placing it among the most consistent
rotational performers. The combined average error in x and y was 23.01 mm.

At the maximum tested height of 800 mm, only 1 out of 10 trials succeeded. In that
singular successful trial, the recorded x error was 62.13 mm, y error was 8.74 mm, and u
error was 7.11°. The 90% failure rate at this height clearly illustrates the system’s practical
detection limits when image resolution falls too low to reliably identify the part’s profile.
This marked drop in success strongly suggests the highest viable scanning height lies below

800 mm. The average positional error in X and y for the successful trial was 35.44 mm.
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The standard deviation values provide additional insight into the variability of each
configuration. The highest x direction variability occurred at 650 mm, with a standard
deviation of 4.04 mm, despite its poor average accuracy. In contrast, 770 mm showed the
most stable x error at 2.18 mm, highlighting consistency despite increased y error. For y
error, the 770 mm configuration showed the greatest variability with a standard deviation
of 1.03 mm, while the 710 mm configuration displayed near-perfect stability with a y
standard deviation of just 0.06 mm. U error was most consistent at 650 mm (0.42°) and
least consistent at 740 mm (3.42°). These patterns reflect how scanning height adjustments
affected not only average accuracy but also the repeatability of the system’s performance
across trials. Figure 8 summarizes the observed displacement inaccuracies across all

scanning height configurations tested.
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Figure 8: Displacement Inaccuracy vs. Scanning Height
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To better evaluate the relative accuracy of each scanning height across both spatial
and rotational axes, a normalized error analysis was performed. This method compensates
for differences in unit scale between displacement (mm) and rotation (degrees) by
normalizing each error axis relative to the maximum observed value and averaging the
results. The outcome is a unitless score between 0 and 1, where lower values indicate better
overall performance.

As shown in Fig. 9., the lowest normalized error occurred at 710 mm (0.3845),
followed closely by 740 mm (0.4288), reinforcing earlier conclusions that these heights
offered the most balanced and consistent performance. The highest normalized error was
observed at 800 mm (0.7091), confirming the poor effectiveness at extreme scanning
distances. Interestingly, the baseline configuration at 770 mm yielded a relatively high
normalized error of 0.6471 despite its strong rotational accuracy, due to its large y-direction

deviation.
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Figure 9: Normalized Error vs. Scanning Height

59



4.3.2 Conveyor Belt Speed

The effect of part velocity on system performance was assessed by testing three
conveyor belt speeds using the system’s dial control settings: 0.75, 1.0 (baseline), and 1.5.
These settings were calibrated to represent linear part speeds of approximately 32 mm/s,
50 mm/s, and 95 mm/s, respectively.

At the lowest speed (0.75 setting, ~32 mm/s), the average error in X was 37.75 mm,
with a minimum of 7.14 mm and a maximum of 96.96 mm. Y error remained relatively
low at 2.37 mm, with a range from 0 mm to 10.59 mm, while u error averaged 5.43°,
ranging from 3.00° to 7.21°. The combined average positional error in x and y was 20.06
mm. Despite the slow movement allowing more time for prediction, positional estimation
became somewhat inconsistent, particularly in the x direction.

At the 1.0 speed setting (~50 mm/s)—used as the baseline for most experiments—
the average x error dropped to 14.57 mm, while y error increased to 31.46 mm. The
rotational error averaged 5.91°, with bounds between 2.90° and 8.10°. The combined x and
y error was 23.01 mm. This configuration provided a relatively strong balance between
detection and robot reaction time and was the most stable across repeated trials, with all 10
being successful.

At the highest tested speed of 1.5 (~95 mm/s), the success rate dropped to 4 out of
10 trials. In those four successful cases, the average x error was 25.49 mm (range: 1.48 mm
to 59.45 mm), while y error averaged 14.60 mm and u error was 7.82°, with angular errors
ranging from 7.33° to 8.55°. The average positional error was 20.04 mm. The failure in six

of ten trials was due to the part exiting the camera frame too quickly, preventing full
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tracking and velocity estimation. Even in the successful trials, reduced data collection time
introduced moderate variability in all axes.

Standard deviation analysis reflects these patterns in consistency across different
speeds. At the lowest speed of 32 mm/s, the standard deviation for x error was 12.96 mm,
for y error was 1.91 mm, and for u error was 0.67°. The baseline speed of 50 mm/s had the
lowest variability in x (4.35 mm) and u (0.84°), but the y error variability was slightly
higher at 1.03 mm. At the highest speed of 95 mm/s, standard deviation increased in every
category: 12.34 mm in x, 3.23 mm in y, and 3.23° in u. This reflects a marked increase in
trial-to-trial error dispersion at higher conveyor velocities. Figure 10 shows the values for

conveyor speed against displacement inaccuracies.
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A normalized error analysis was performed for conveyor belt speed to account for
cross-dimensional variability and to better visualize combined system performance. This
method normalizes each axis by its maximum observed error and then averages the values,
yielding a unitless score between 0 and 1.

As seen in Fig. 11., normalized error increased as conveyor speed increased,
indicating a decline in overall system coordination and reliability. At 32 mm/s, the
normalized error was 0.5899, the lowest among all speeds. The baseline speed of 50 mm/s
produced the highest normalized error at 0.7142, driven largely by the high y-direction
inaccuracy. Interestingly, while the average positional error at 95 mm/s was not drastically
higher than the others, its normalized error of 0.7131 reveals a performance closer to the
baseline configuration than initially assumed. This discrepancy underscores how
normalized metrics can uncover subtleties in multi-dimensional behavior not immediately

apparent in unnormalized averages.
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4.3.3 Velocity Estimation Iterations

To assess the influence of data sampling frequency on predictive accuracy, the
number of iterations used to estimate part velocity was varied from 8 to 14. Each iteration
captured a new part position, which was used to compute an updated velocity average.

At 8 iterations, the system produced an average x error of 15.29 mm, with values
ranging from 3.85 mm to 34.67 mm. The average y error increased significantly to 33.47
mm (range: 26.84 mm to 43.90 mm), while u error was 7.05°, ranging from 6.65° to 7.71°.
These results demonstrated improved x performance but decreased y stability. At 9
iterations, the system achieved an x error of 29.71 mm, y error of 30.90 mm, and u error of
6.62°. The respective error ranges were 0 mm to 54.32 mm in x, 21.60 mm to 39.08 mm in
y, and 3.87° to 9.02° in u. The 10-iteration setup improved average x error to 14.57 mm,
with a range from 2.60 mm to 26.10 mm. Y error increased slightly to 31.46 mm, while u
error improved to 5.91°, ranging from 2.90° to 8.10°. This configuration provided one of
the most balanced trade-offs across all axes.

At 11 iterations, results remained stable with an average x error of 18.61 mm (range:
0.02 mm to 46.56 mm), y error of 30.20 mm (range: 15.54 mm to 48.92 mm), and u error
of 6.64°, ranging from 3.84° to 10.85°. By 12 iterations, average x error decreased slightly
to 13.02 mm, y error remained stable at 30.88 mm, and u error was 6.45°, with performance
beginning to plateau. At the maximum tested count of 14 iterations, the system produced
an x error of 15.52 mm (range: 0 mm to 42.46 mm), y error of 6.22 mm (range: 0 mm to
42.46 mm), and u error of 6.56°, reflecting a drop in accuracy.

The standard deviation values offer insight into the consistency of each iteration

setting. At 8 iterations, the x error deviation dropped to 2.58 mm, but y error deviation rose
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to 3.12 mm, indicating greater inconsistency. At 9 iterations, standard deviation rose to
3.90 mm in x and 3.20 mm in y, marking a return to broader trial-to-trial variability.

At 10 iterations, x error standard deviation was 2.07 mm, indicating the most
consistent x predictions across trials. Deviations in y and u were also minimized at 1.03
mm and 0.84°, respectively, suggesting this was the most stable configuration overall. As
iterations increased beyond 10, standard deviations began to climb again. At 11 iterations,
the x error deviation was 4.62 mm, y error deviation was 4.68 mm, and u error deviation
peaked at 1.05°. Similar trends held at 12 and 14 iterations. These results reinforce the
notion that while higher iteration counts can smooth velocity estimates, they also introduce
processing delays and may reduce responsiveness to rapid motion changes.

A trendline analysis was applied to the average positional error across iterations to
better visualize the relationship between sampling frequency and accuracy. The resulting
exponential decay curve, shown in Fig. 12., followed the model y = 33.58¢™*!'X, with a
coefficient of determination R> = 0.5152. While this R? value indicates only moderate
correlation, it does support the observed trend that increasing the number of velocity
iterations generally improves positional accuracy, albeit with diminishing returns after a

certain point.
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Figure 12: Displacement Inaccuracy vs. Iteration Count. Trendline for the Average

series is depicted as well, with the equation and R? value included.

To further evaluate the impact of iteration count on overall accuracy, normalized
error values were calculated using axis-wise max normalization. This method accounts for
differences in unit scale across X, y, and u dimensions, enabling a more unified metric for
comparison. The results show a distinct pattern: the normalized error peaked at iteration
count 9 with a value of 1.0000, indicating the poorest overall performance in terms of
combined displacement and rotational inaccuracy. Conversely, the lowest normalized error
occurred at 14 iterations, with a value of 0.5821, highlighting a significant gain in total
system accuracy. Notably, although the raw average error values did not always follow a
strict monotonic trend, the normalized error reveals that iteration counts above 10 generally
yielded better overall accuracy across all axes. These results emphasize the importance of

considering normalized error alongside raw values to uncover underlying performance
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improvements that may otherwise be obscured by unit disparities or axis-specific

variability. Figure 13 illustrates this relationship, plotting normalized error against iteration

count.
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Figure 13: Normalized Error vs. Iteration Count

4.3.4 Robot Motion Constraints

To assess the effect of physical robot responsiveness, tests were conducted by
adjusting both maximum speed and acceleration simultaneously. Three configurations
were tested: 500 mm/s and 500 mm/s?, 1000 mm/s and 1000 mm/s? (baseline), and 1500

mm/s and 1500 mm/s2.

At the lowest setting (500 mm/s, 500 mm/s?), 9 out of 10 trials succeeded. The
average x error was 17.55 mm, with values ranging from 0 mm to 30.74 mm. The y error

was low at 0.13 mm, ranging between 0 mm and 0.64 mm. Rotational error averaged 6.02°,
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with a range of 5.72° to 6.44°. The total average error for this configuration was 8.84 mm.
The single failure trial was due to the robot’s inability to reach the pickup point in time, as
the reduced speed and acceleration limited its range and responsiveness.

At the baseline setting (1000 mm/s, 1000 mm/s?), the robot successfully completed
all ten trials. The average x error was 14.57 mm, ranging from 2.60 mm to 26.10 mm. Y
error increased to 31.46 mm, with values between 27 mm and 33.4 mm. U error averaged
5.91°, ranging from 2.90° to 8.10°. The total average error for this setting rose to 23.01
mm. This configuration represented a strong compromise between mechanical speed and
positional stability, maintaining high success and acceptable accuracy across all axes.

At the highest setting (1500 mm/s, 1500 mm/s?), the average x error rose to 44.61
mm (range: 29.87 mm to 52.6 mm). However, y error improved dramatically to 6.15 mm,
with a minimum of 0 mm and a maximum of 10.23 mm. Rotational accuracy also improved
slightly, with an average u error of 5.59° and a range between 3.43° and 8.85°. Despite
improved y and u performance, the x error increase resulted in a total average error of 25.38
mm. This configuration demonstrated that while faster motion limits reduced y and u error,
they introduced increased error in the x direction.

Standard deviation results further support the observed trends in variability across
the three motion settings. At the lowest speed and acceleration (500 mm/s?), x error
standard deviation was 5.92 mm—the highest among the three—indicating unstable
horizontal positioning across trials. However, this setting maintained the lowest variability
in both y and u axes, with standard deviations of 0.143 mm and 0.137°, respectively. The
baseline configuration (1000 mm/s*) demonstrated moderate consistency in the x error,

with a standard deviation of 4.7 mm, lower than the slowest setting, though not as
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consistent as the highest setting. The y error variability increased significantly to 1.11 mm,
while u error standard deviation was 0.90°, reflecting broader trial-to-trial shifts,
particularly in y. At the highest motion setting (1500 mm/s?), the x error standard deviation
decreased to 3.76 mm, while the y error standard deviation dropped sharply to 1.93 mm.
The u error had moderate rotational consistency with a low standard deviation of 1.04°,
indicating improved consistency in rotational alignment despite faster robot movements.

These values are plotted in Fig. 14.
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In addition to raw error values, normalized error analysis provides further insight
into overall configuration performance, graphed in Fig. 15. By applying axis-wise max

normalization, the composite error in X, y, and u was scaled to allow direct comparison
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across configurations. The 500 mm/s setting achieved the lowest normalized error at
0.4658, suggesting strong combined accuracy despite minor increases in trial-to-trial x
variation. The baseline configuration of 1000 mm/s exhibited the highest normalized error
at 0.7698, largely driven by the significant increase in y error. Interestingly, the 1500 mm/s
setting resulted in a slightly improved normalized error of 0.7080 compared to the baseline,

driven by much lower y error despite the sharp rise in x.
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Figure 15: Normalized Error vs. Robot Motion Limits

4.3.5 Summary of Failed Attempts

While the majority of trials across all test scenarios were successful, several
configurations experienced partial or total failure in achieving accurate pickups. These
failures occurred in cases where either the robot was unable to reach the predicted position
in time, or the part exited the field of view before velocity estimation and interception could

69



be completed. This section summarizes the test conditions under which failures occurred,
including the frequency and potential mechanical limitations observed.

The most severe failures occurred at the maximum scanning height of 800 mm,
where 9 out of 10 trials failed. At this height, the camera’s reduced resolution and
diminished ability to consistently identify the part profile led to frequent tracking errors.
The single successful trial yielded a relatively high x error of 62.13 mm. Detection failure
at this height was likely due to the part’s small visual footprint in the image frame, which
increased the chance of mismatch with the stored template. At the 650 mm scanning height,
although 8 out of 10 trials were successful, the two failures stemmed from abrupt part
reorientation at close range, which exceeded the field of view before the camera could
compensate. These failures suggest a visibility issue, where the limited viewing angle
restricted the system’s ability to gather sufficient data for velocity estimation, resulting in
either inaccurate predictions or complete tracking loss.

Failures also occurred while testing the effects of conveyor belt speed. At the 1.5
dial setting (95 mm/s), the system completed only 4 out of 10 trials successfully. The
primary reason for failure was the rapid movement of the part, which often caused it to exit
the frame before sufficient data was collected. In many of these cases, the camera failed to
capture enough high-quality images before the part left the observable area, preventing a
complete velocity profile from being formed. This speed exceeded the practical capture
rate of the system’s camera, introducing both motion blur and data gaps in the tracking
phase.

Additionally, at the 500 mm/s and 500 mm/s? motion limit setting, 1 out of 10 trials

failed due to the robot’s inability to reach the predicted interception point in time. The
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reduced acceleration caused a significant delay in movement initiation, which—although
not affecting y or u accuracy—prevented the gripper from arriving at the correct x position
fast enough. In this trial, the part moved out of reach by the time the robot initiated the
descent phase.

In total, failures were most closely associated with configurations that introduced
excessive uncertainty into either the part’s estimated trajectory or the robot’s ability to
respond. Specifically, high conveyor speeds and high scanning heights posed the greatest
challenges to the system’s vision tracking reliability, while low motion constraints
primarily limited the robot’s mechanical responsiveness. Across all failure cases, the
common thread was insufficient coordination between visual detection and mechanical

actuation, preventing timely and accurate interception.

4.4 Summary of Key Findings

This section consolidates the major outcomes presented throughout Chapter 1V,
highlighting recurring patterns, relative performance across configurations, and
statistically notable accuracy trends. The purpose is to provide a clear overview of the
experimental results obtained without analysis or interpretation.

Among the three predictive strategies evaluated, the Hypotenuse Method
consistently yielded the highest accuracy across most measured metrics. It achieved the
lowest average x error of 14.57 mm, a moderate y error of 31.46 mm, and a rotational error
of 5.91°, all while maintaining a 100% trial success rate. The Direct Kinematic Method
averaged 40.11 mm in the x error, with stronger performance in y and rotational alignment.

The Ambush Method produced intermediate x error levels of 43.28 mm, the best y error at
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21.12 mm, and the second highest u error at 6.56°, indicating mixed but successful results
across axes.

Optimal scanning height was found between 710 mm and 770 mm, with these
configurations delivering the best balance of positional and rotational accuracy. At 770
mm, the system achieved one of the lowest x errors (14.57 mm) and strong rotational
performance (5.91°), though it also recorded the highest average y error. Scanning heights
of 650 mm and 800 mm demonstrated the most instability. At 650 mm, x error averaged
43.15 mm, and the u error was 8.37°, while at 800 mm, only 1 of 10 trials succeeded. These
results reflect a strong dependency on maintaining a camera height within a functional
detection window.

The baseline conveyor speed of 50 mm/s (setting 1.0) produced the most stable
results, with an average x error of 14.57 mm, y error of 31.46 mm, and u error of 5.91°. At
the slower speed of 32 mm/s (setting 0.75), x error increased significantly to 37.75 mm,
with a similar trend in rotational error (5.43°). At the highest tested speed of 95 mm/s
(setting 1.5), the success rate dropped to 4 out of 10 trials, and x error averaged 25.49 mm,
y error 14.60 mm, and u error 7.82°, reflecting a degradation in accuracy with speed
increases.

Velocity estimation iteration counts between 9 and 12 yielded the most consistent
accuracy. At 10 iterations, the system produced an x error of 14.57 mm, y error of 31.46
mm, and rotational alignment of 5.91°. At the maximum tested iteration count of 14, the
system achieved an x error of 15.52 mm, y error of 6.22 mm, and u error of 6.56°, reflecting
improved y performance at the cost of slight increases elsewhere. Additionally, a trendline

analysis of iteration count versus average error revealed an exponential decay trend y =
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33.58¢%!!x with an R? value of 0.5152, indicating moderate correlation between increased
sampling frequency and improved accuracy.

Motion constraints significantly influenced performance. The baseline
configuration (1000 mm/s velocity and 1000 mm/s? acceleration) provided balanced
results, with an x error of 14.57 mm, y error of 31.46 mm, and u error of 5.91°. Increasing
speed and acceleration to 1500 mm/s and mm/s? reduced y error to 6.15 mm and u error to
5.59°, but increased x error to 44.61 mm. Conversely, reducing motion parameters to 500
mm/s and 500 mm/s? improved y error to 0.13 mm, while increasing x error to 17.55 mm
and u error to 6.02°.

Failures were most frequently observed at high scanning heights and fast conveyor
speeds, where vision detection and part tracking became unreliable. The system failed in 9
of 10 trials at 800 mm scanning height and 6 of 10 trials at 95 mm/s conveyor speed. A
single failure occurred during testing with low motion constraints (500 mm/s and mm/s?),
where the robot was physically unable to reach the part before it moved out of reach. No
complete failures occurred during iteration count tests, although lower iteration counts
exhibited more extreme variability in x error, including deviations exceeding 149 mm.

In addition to average errors, standard deviation values offer insight into the
system’s precision and consistency across repeated trials. The Direct Kinematic Method
produced the second lowest standard deviation in x error (3.06 mm), while the Hypotenuse
Method showed greater consistency in u error (0.84°) and moderate variation in x and y.
The Ambush Method had the highest standard deviation in y error (4.90 mm), as well as
the highest standard deviation in rotational alignment (1.41°). For other variables, the

lowest standard deviation in u error occurred at 8 iterations (0.18°), and the highest x error
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variability occurred at 650 mm scanning height (81.67 mm). These trends reveal where the
system achieved not just accuracy, but repeatability.

In addition to traditional raw error analysis, normalized error values were calculated
using axis-wise maximum normalization to unify positional and rotational inaccuracies
into a common performance metric. These normalized results revealed deeper performance
distinctions, highlighting that the 14-iteration configuration produced the lowest overall
normalized error (0.5821), while faster conveyor speeds and extreme scanning heights
generally led to worse normalized performance. Normalized error analysis proved
particularly valuable in cases where raw X, y, and u values shifted independently, providing
a single metric that better captures true overall system performance across different

conditions.
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Chapter V: Conclusion

5.0 Introduction

This chapter consolidates the primary outcomes of the study, reflecting on
experimental observations, performance trends, and key takeaways from testing the vision-
guided pick-and-place robotic system. It is organized to provide both a concise summary
of results and a broader interpretation of what those results suggest in practical and
technical contexts. Section 5.1 offers a recap of major findings across all variables,
including pickup method, scanning height, conveyor speed, iteration count, and robot
motion constraints. It summarizes which configurations performed best and identifies
patterns in positional and rotational accuracy, as well as trial success rates. Section 5.2
presents a deeper discussion and interpretation of the results. Each subsection focuses on a
specific variable and explains why the observed trends may have occurred. These
interpretations incorporate insights related to vision system limitations, robot dynamics,
and environmental factors, connecting the data to broader engineering principles and
practical implications. Section 5.3 considers how these results relate to system reliability
and real-world deployment. It discusses system-level behavior beyond raw accuracy—such
as part detection consistency, success rates, and gripper performance—and reflects on what
makes this type of vision-guided system viable or limited in different application scenarios.
Section 5.4 addresses experimental limitations and outlines potential areas for future work.
This includes improvements to hardware, sensor resolution, image processing algorithms,
and control logic. It also reflects on the sources of error in the experimental setup and
proposes adjustments that could enhance system precision, repeatability, or speed in future

iterations of this work.
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Finally, Section 5.5 offers concluding remarks on the broader significance and feasibility
of this research. It reaffirms the core objectives of the project and reflects on its potential

role in expanding access to industrial automation for smaller-scale manufacturers.

5.1 Summary of Key Results

The experimental findings revealed clear trends in system performance as each
major parameter was varied. This section summarizes the most important outcomes across
pickup strategy, scanning height, conveyor speed, iteration count, and robot motion
constraints, with emphasis on comparative accuracy and success rate performance. While
detailed values were provided in Chapter IV, the following overview highlights relative
strengths and weaknesses of different configurations based on average x and y positional
error, rotational alignment, and normalized accuracy.

The Hypotenuse Method yielded the best combined positional accuracy across all
three tested methods. It achieved an average x error of 14.57 mm and a y error of 31.46
mm, resulting in a combined average positional error of 23.02 mm. In comparison, the
Direct Kinematic Method recorded an x error of 40.11 mm and y error of 30.14 mm, for a
combined average of 35.13 mm, while the Ambush Method showed the best y accuracy at
21.12 mm but the highest x error at 43.28 mm, resulting in a combined average of 32.20
mm. These comparisons highlight the Hypotenuse Method’s superiority in minimizing
error across both axes, achieving a 34% lower average positional error than the next best
method.

Optimal performance was achieved within the 710 mm to 770 mm range, with the

770 mm height (baseline) offering the lowest x error (14.57 mm) and strong rotational
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performance (5.91°), albeit at the cost of the highest y error (31.46 mm). The 710 mm
configuration, on the other hand, produced nearly perfect y accuracy (0.08 mm) and a
moderately higher x error (16.45 mm), yielding a combined positional error of 8.27 mm—
the best overall. Performance deteriorated outside this range, with the 650 mm height
yielding an average x error of 43.15 mm and 800 mm resulting in only 1 out of 10
successful trials. This confirms that scanning height must be tuned within a specific
detection window to balance field of view, resolution, and predictive consistency.

The baseline speed of 50 mm/s combined a full success rate with solid accuracy,
producing an x error of 14.57 mm and a y error of 31.46 mm. Slower motion at 32 mm/s
worsened performance, increasing x error to 37.75 mm and reducing precision despite the
longer prediction window. At the fastest setting (95 mm/s), the success rate dropped to 4
out of 10, with an average x error of 25.49 mm and y error of 14.60 mm. Though the
positional error seemed lower at high speed, the inconsistency and trial failures suggest
diminished reliability. The baseline speed thus remains the most stable configuration for
continuous performance.

Accuracy improved steadily with increasing iteration count, confirming that larger
sample sizes allowed better velocity estimation. The best performance occurred at 14
iterations, with the lowest x error (15.52 mm) and a substantially reduced y error (6.22
mm), resulting in a combined average error of 10.87 mm—the best across all
configurations. At 10 iterations, x error matched that of 14 iterations (14.57 mm) but y
error was significantly worse (31.46 mm), producing a combined error of 23.02 mm. This

validates that although 10 iterations were stable, 14 iterations cut total positional error by
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over 50%. A fitted exponential decay trendline, y = 33.58¢%!!* with R? = 0.5152, further
illustrated diminishing gains beyond 12 iterations.

Changes in speed and acceleration directly impacted positional error. The baseline
configuration (1000 mm/s, 1000 mm/s?) had a balanced x error of 14.57 mm and y error of
31.46 mm, for a combined error of 23.02 mm. Increasing the limits to 1500 mm/s and
mm/s? improved y accuracy dramatically (6.15 mm) but more than tripled x error to 44.61
mm, yielding the worst combined average of 25.38 mm. Reducing limits to 500 mm/s and
mm/s? led to the lowest y error (0.128 mm) but an x error of 17.55 mm, producing a
positional average of 8.84 mm—second only to the best scanning height result. Normalized
error analysis supported the finding that faster robot movements reduced control in the x-
direction while improving other dimensions, highlighting the need for application-specific

trade-offs.

5.2 Interpretation and Analysis of Results

While Section 5.1 provided a condensed summary of key outcomes, the following
subsections aim to explain why the observed trends occurred by examining the physical,
mechanical, and logical behaviors underpinning each variable. Each subsection focuses on
one of the core tested parameters; pickup method, scanning height, conveyor belt speed,
iteration count, and robot motion limits, and offers reasoning for the system’s performance.
In some cases, the trends are intuitive and easily explainable, while in others, the reasoning
is more speculative or remains undetermined. Where appropriate, this section introduces

original hypotheses based on practical system behavior and engineering reasoning. Key
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performance metrics referenced here have already been summarized in Section 5.1,

presented in full in Chapter IV, and detailed comprehensively in the appendix tables.

5.2.1 Pickup Method

Among the three predictive strategies evaluated—Direct Kinematic, Hypotenuse,
and Ambush—the Hypotenuse Method consistently outperformed the others in terms of
overall accuracy. Its effectiveness is largely attributable to how it models the physical
behavior of the robotic system. Unlike the Direct Kinematic Method, which only considers
the vertical (z-axis) travel distance between the robot’s starting position and the part’s
expected location, the Hypotenuse Method accounts for the true diagonal path the robot’s
end effector must follow to reach the pickup point. By factoring in both vertical and
horizontal displacement, it provides a more realistic estimate of the required motion and
time needed for interception, aligning more closely with the robot’s actual trajectory and
dynamic constraints.

The Direct Kinematic Method, by contrast, assumes the robot moves straight down
vertically toward the part’s pickup height. This oversimplification fails to account for the
significant horizontal motion the robot must perform, especially when the part is located
farther from the centerline of the robot’s home position. As a result, it often underestimates
the time required for pickup and causes the robot to arrive late or misaligned. While this
method is computationally simple and can produce consistent rotational alignment due to
its static orientation assumptions, its disregard for horizontal positioning leads to increased
error in the x-direction. This was reflected in the average x error, which was more than

double that of the Hypotenuse Method.
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The Ambush Method takes a fundamentally different approach. Rather than aiming
to intercept the part at its predicted future position, it attempts to “ambush” the part by
traveling to a fixed position ahead of its current trajectory and waiting there to intercept it.
Although this eliminates the need for continuous time or distance estimation during motion,
it introduces a critical vulnerability: error propagation. Since the robot moves significantly
farther from the part’s initial location than the other methods, even small inaccuracies in
initial velocity or position estimation grow larger as the robot waits for the part to arrive.
The longer the gap between prediction and pickup, the more these discrepancies
accumulate—especially in the presence of noisy image processing data or slight
miscalculations in the part’s speed. This likely explains why the Ambush Method exhibited
the highest variability in performance across trials, particularly in rotational alignment and
y-direction placement.

Moreover, while both the Direct Kinematic and Hypotenuse Methods are
interception strategies, the Ambush Method relies on anticipation. For a given part speed,
the Ambush pickup point is typically located farther from the part’s current position than
the interception methods. This increased distance allows more time for error to accumulate
between the predicted and actual part position. Additionally, the Ambush Method requires
precise timing for the gripper’s actuation. Since the robot is already stationed at the pickup
point, the exact moment when the gripper closes becomes critical. Even minor
discrepancies in timing—caused by sensor lag, velocity estimation error, or mechanical
response delays—can result in a failed pickup. As such, the Ambush Method not only

amplifies spatial error over time but also becomes increasingly sensitive to temporal
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inaccuracies, making the overall pickup success rate more dependent on part size, gripper
geometry, and system response precision.

Normalized error metrics reinforce these trends. While the Hypotenuse Method not
only yielded the lowest raw x error and strong rotational consistency, it also had the lowest
normalized combined error, confirming that it offered the most well-rounded and scalable
performance across all dimensions. These results suggest that in vision-guided robotic
applications where both timing precision and trajectory accuracy are critical, strategies that
model real-world motion paths, such as the Hypotenuse Method, are significantly more

reliable than those based on simplified or anticipatory heuristics.

5.2.2 Scanning Height

Testing revealed a clear performance window between 710 mm and 770 mm for
the camera’s scanning height, with both configurations producing strong results in
positional and rotational accuracy. Within this range, the system demonstrated consistently
low x-direction error, solid part recognition success rates, and stable motion prediction—
indicating that this zone represents an effective balance between field of view and image
resolution. The best overall results occurred at 770 mm, while 710 mm showed exceptional
stability in y-direction accuracy. Together, these heights define a practical sweet spot for
system deployment. Understanding why this window exists requires examining the
system’s limitations at the extremes. At the upper bound of 800 mm, the camera offered a
large field of view, but resolution suffered significantly. The resulting image quality was
often insufficient for the vision system to reliably identify the part’s profile, particularly in
cases where contrast or lighting varied. Only one of ten trials was successful at this height.

In the majority of failed cases, the part either went entirely undetected or the system lost
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track of it mid-sequence—sometimes detecting the first position but failing to maintain
consistent detection over subsequent iterations. This breakdown in continuity meant that
the robot could not compute a valid pickup location. At the opposite end, the lowest tested
height of 650 mm introduced a different set of challenges. While the resolution was highest
at this distance, the field of view became extremely narrow, leaving little spatial buffer for
the part to be tracked over time. Parts traversed the camera’s view rapidly, often appearing
in only a few frames before exiting the field entirely. In addition, small tracking errors were
amplified by the reduced viewing area. Blurring caused by part motion and the robot’s own
adjustments further degraded the image quality, making it difficult to capture and process
clean part profiles. Although the success rate at this height was better than at 800 mm,
performance was still inconsistent and prone to failure in tightly timed sequences.

The 710 mm to 770 mm range represents a balance point between these two
extremes—offering a field of view wide enough to capture the part’s full trajectory without
significantly sacrificing resolution. Within this optimal window, the average x error was
18.16 mm and the average y error was 11.13 mm, with all trials at both heights resulting in
successful pickups. In contrast, outside this window, the system saw a sharp drop in
accuracy and reliability. At 650 mm and 800 mm, the average x error rose to 43.15 mm
and 62.13 mm respectively, while y errors increased to 4.13 mm and 8.74 mm.
Additionally, the 800 mm configuration had only one successful trial out of ten. This
comparison underscores the system’s sensitivity to camera positioning: even small shifts
outside the ideal range led to performance declines of over 100% in x-direction error alone.
These results illustrate that neither resolution nor field of view can be optimized in

isolation. High resolution with a restricted view leads to truncated tracking, while a wide
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field with low resolution compromises image clarity. The 710—770 mm range emerged as
the only region where both variables were simultaneously acceptable—enabling reliable
tracking and accurate velocity estimation.

It should be noted that the specific results achieved here are partially influenced by
the camera’s fixed internal settings and physical mounting position. Future work will
explore how adjustable camera parameters—such as focus depth, resolution modes, and
exposure timing—may shift or even broaden the optimal scanning height range. These
findings reinforce the importance of camera selection and setup as key factors in the overall

accuracy and reliability of vision-guided robotic systems.

5.2.3 Conveyor Belt Speed

The effect of conveyor belt speed on system accuracy followed a mildly increasing
trend in both average and normalized error as part velocity rose, though the overall
differences across the tested speeds were small. At the lowest tested speed of 32 mm/s, the
system achieved the lowest average error (20.06 mm) and the lowest normalized error
(0.5899). At the baseline speed of 50 mm/s, the average error slightly increased to 23.01
mm, and the normalized error rose to 0.7142. At the fastest tested speed of 95 mm/s, the
average error decreased slightly to 20.04 mm, though the normalized error remained high
at 0.7131. This highlights a key distinction between the two metrics: while raw average
error did not vary dramatically across speeds, normalized error shows a more consistent
upward trend, suggesting that the system’s proportional error increases slightly as part

speed increases, even if absolute error remains relatively constant.
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This trend makes intuitive sense. A faster-moving part becomes more difficult to
intercept accurately due to reduced reaction time and increased distance between detection
and pickup. As observed in the ambush method, any deviation in velocity estimation or
detection timing becomes amplified the farther the part travels before pickup. In the context
of conveyor belt speed, a faster part inherently requires the robot to intercept further
downstream, magnifying the effects of any small errors in velocity prediction or gripper
trajectory. This explains the rise in normalized error, even when average error appears to
plateau.

However, the relative stability of average error values across the tested range
underscores a valuable characteristic of the system: within its operational detection
window, part velocity does not significantly degrade accuracy. The highest and lowest
average errors across the three speeds differed by less than 3 mm, and all three
configurations resulted in successful trial completion rates of 100% (10/10). This
robustness suggests that the system can be deployed across a moderate range of part speeds
without necessitating major algorithmic or hardware adjustments.

It’s important to note, though, that this stability exists only within the functional
speed limits of the system. During exploratory tests at conveyor speeds above 95 mm/s,
the system began to fail in recognizing the part consistently due to excessive motion blur
and insufficient frame coverage. Even using the baseline scanning height of 770 mm, which
provided a balanced field of view and resolution, the part would exit the frame too quickly
for reliable multi-frame tracking. This limitation echoes the issues observed at extreme

scanning heights and underscores that, above a certain threshold, part velocity does impact

84



system performance in a more severe and binary fashion—making it impossible to collect
reliable pickup data at all.

Conversely, speeds below 32 mm/s were not tested due to hardware constraints of
the conveyor belt controller, which could not maintain slower, consistent movement.
Future work may involve testing sub-32 mm/s speeds using more precise motor controllers
to determine if ultra-slow motion offers marginal accuracy gains or introduces new issues
such as part oscillation or image processing stutter. For now, the takeaway is that within
the range of 32-95 mm/s, the system demonstrates strong velocity tolerance. Accuracy
does decline gradually as speed increases, particularly when measured proportionally, but

this effect remains relatively minor until the system’s upper speed limit is surpassed.

5.2.4 Iteration Count

The number of iterations used to estimate part velocity was found to be a critical
factor influencing system accuracy. Though earlier results appeared to suggest that 8
iterations yielded relatively low average error, further analysis reveals that this value is
likely an outlier. The outlier removal strategy—based on boxplot statistical filtering—may
have removed extreme deviations from the 8-iteration data, artificially lowering the
average error by excluding multiple poor predictions. This is likely due to the limited
sampling available at low iteration counts, where with only a few observed positions, the
system might randomly “get lucky” in estimating velocity for some trials. As a result, while
8 iterations appears relatively accurate in raw output, it does not follow the broader trend
observed in the remaining data and may be misleading as an indicator of consistent

performance.
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Beginning at 9 iterations and continuing through 14, a clear and consistent trend
emerges: increasing the number of velocity estimation iterations generally improves
overall system accuracy [17]. This trend is particularly evident when examining normalized
error, which decreases steadily from 0.9541 at 9 iterations to just 0.5459 at 14 iterations. A
similar improvement is observable in average error as well, with x and y displacement
inaccuracies falling with higher iteration counts. For example, the average error drops from
30.31 mm at 9 iterations to just 10.87 mm at 14 iterations. These results reinforce the
intuitive understanding that additional iterations provide more velocity data points,
allowing for a more stable and accurate velocity estimate.

This trend is further supported by the exponential regression model applied to the
data, which fit an equation of the form:

Error = 33.58¢0-11x
with a coefficient of determination R? = 0.5152, reflecting a reasonably strong fit.
Extrapolating from this equation provides insight into expected performance beyond the
tested range. At 25 iterations, the model predicts an average error of approximately 2.15
mm. By 35 iterations, this falls to 0.71 mm, and by 45 iterations it approaches 0.24 mm.
While it is unlikely that actual system performance would meet these exact predictions,
especially given real-world noise and limits in precision, these projections do suggest that
continued improvement can be expected, albeit at a diminishing rate. Indeed, diminishing
returns are a central consideration when increasing iteration count. Each additional sample
contributes progressively less to the improvement of the velocity estimate. Statistically, the
marginal effect of a new observation on a running average decreases as the sample size

increases. This effect places a practical upper bound on the benefits gained from additional
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iterations, even in an ideal system. Moreover, real-world implementation introduces further
constraints. As mentioned in Chapter IV, the system ignores the first three observed
velocity values in each test to allow the robot to stabilize and align with the part’s motion.
Thus, a 14-iteration test includes only 11 active data points in practice. Increasing iteration
count further would lengthen the system’s scanning duration, pushing the predicted pickup
point farther down the conveyor. Eventually, this delay could result in the part exiting the
robot’s reach or even leaving the vision system’s frame entirely before pickup occurs. In
setups with shorter belts or limited reach, this limitation becomes a critical concern.
Therefore, while higher iteration counts improve accuracy, they also introduce risks of
failure due to physical constraints.

In summary, increasing iteration count improves prediction accuracy due to more
robust velocity estimation, a trend that aligns with both theoretical reasoning and
experimental results. However, practical considerations—including processing time, robot
reach, and diminishing returns—place an upper bound on the number of iterations that can
be used effectively. This trade-off must be carefully considered in real-world applications,
especially in time-constrained or spatially limited environments.

5.2.5 Robot Motion Limits

Among all tested variables, robot motion limits presented some of the least intuitive
results. One might expect that improving the robot’s mechanical responsiveness would
enhance pickup accuracy by enabling it to reach the predicted part location more quickly.
However, the data showed the opposite trend: as the speed and acceleration settings
increased from 500 to 1500 mm/s and mm/s?, the system’s accuracy declined, especially

when measured by normalized error. The normalized error increased from 0.4658 at 500
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mm/s to 0.7080 at 1500 mm/s, and average error rose from 8.84 mm to 25.38 mm across
the same range.

While these findings are repeatable, their underlying cause remains unclear. One
likely explanation is that increasing robot speed and acceleration introduces higher-
frequency mechanical oscillations that affect the mounted camera. Because the camera is
attached via a relatively lightweight plastic mount, these oscillations may create small but
significant vibrations—especially during rapid accelerations or abrupt stops. Since the
camera is angled downward toward the part, even slight tilting or vibration can alter the
perceived profile of the part or distort its edges during image capture. This can cause subtle
shifts in the estimated part centroid or orientation, ultimately leading to inaccurate pickup
predictions despite precise robot movement. This idea is supported by exploratory testing
performed at the robot’s maximum motion limits of 2000 mm/s and mm/s>. Although full
trials were not completed at that level, informal observations revealed consistent detection
issues, particularly when trying to track multiple part positions in sequence. The system
could reliably detect the first part position while the robot was stationary, but it often failed
to capture subsequent observations after initiating motion. This behavior suggests that
mechanical disturbance introduced by high-speed robot operation could be impacting the
camera’s ability to capture consistent frames.

Interestingly, although the robot itself has high internal accuracy and repeatability,
the pickup accuracy did not improve with increased motion speed. This indicates that the
source of the error is not in the robot’s motion execution but rather in the upstream
process—specifically in how part location is perceived and interpreted. Faster robot

movement may introduce timing irregularities or misalignments between when the image
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is captured and when the data is processed. Alternatively, it may shorten the exposure
window or increase motion blur if the robot is still moving or vibrating when a frame is
captured. These effects are especially impactful in vision-based systems relying on rapid,
accurate sampling. Another potential contributing factor is the synchronization between
robot motion commands and image acquisition. At higher speeds, even slight lags in system
timing or control latency may have a disproportionate impact on performance, particularly
when parts are moving quickly through the field of view. These timing mismatches could
explain why the camera successfully detects the part’s first position but fails to reliably
detect subsequent ones. Although not directly reflected in the final trials, testing at lower-
than-500 mm/s speeds was attempted. However, the robot’s motion became so slow that
the predicted pickup point occasionally fell outside the robot’s reachable workspace or off
the edge of the conveyor entirely. As a result, 500 mm/s was selected as the lower limit for
meaningful testing.

In conclusion, while increasing robot motion limits might appear beneficial on
paper, the results show that there is an optimal balance between mechanical responsiveness
and system stability. Beyond a certain point, speed-related disturbances appear to outweigh
any gains in reactivity. The observed trend is not as easily attributable to a single source as
with other variables, but plausible explanations point to vibration, motion blur, timing
mismatches, and the physical limitations of the camera mount. Future improvements might
involve stiffening the camera fixture, refining synchronization between sensing and

motion, or implementing damping techniques to reduce vibration at high speeds.

89



5.3 Feasibility, System-Specific Considerations, and Research Objective Reflection

A core goal of this research was to evaluate the feasibility of a vision-guided,
single-camera robotic pick-and-place system for use in practical automation environments.
Specifically, the system was designed with small- to mid-sized manufacturers in mind—
those who may seek accessible, adaptable solutions to begin integrating automation into
existing processes without the high cost or complexity of industrial-grade systems. The
experiments described in Chapter IV and the performance trends discussed in Section V.2
provide a basis to determine whether this concept can be successfully applied in real-world
contexts.

To begin, Research Objective 1 sought to determine the maximal achievable
accuracy of the system. This was done through testing across a range of variable
configurations, yielding best-case results such as an average displacement error of 10.87
mm and normalized error as low as 0.5459. While these values are not sufficient for high-
precision manufacturing contexts, the aim of this project was not to meet the standards of
advanced multi-sensor platforms, but to assess whether a lower-cost, single-sensor
approach could achieve reliability within acceptable functional limits for less demanding
tasks. As shown in the industry comparison section of Chapter IV, accuracy expectations
differ significantly across industrial applications. In highly regulated or tolerance-critical
sectors such as aerospace, semiconductors, and fine electronics assembly, even small
deviations can render a system unusable. In contrast, many general-purpose manufacturing
or logistics tasks—such as part staging, basic pick-and-place, or rough sorting—can
tolerate some margin of error depending on the use case. While this system’s average

accuracy of ~94% does not meet universal standards, it does represent a meaningful level
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of reliability that could be appropriate for certain operations, particularly if supported by
thoughtful integration with part and gripper design. This leads to an important system-
specific consideration not emphasized in earlier sections: the relationship between average
accuracy and overall pickup success. While accuracy was measured as the distance
between the robot’s gripper center and the actual center of the part, the true practical impact
of that deviation depends on the geometry of the part and the dimensions of the end effector.
For example, in this experiment, the gripper width left roughly 8 mm of tolerance on each
side of the part. This meant that inaccuracy greater than 8 mm in either direction would
likely result in a failed pickup. However, if a manufacturer used a gripper that extended 20
mm beyond the part width on each side, that same average deviation could result in a much
higher pickup success rate. This illustrates a key concept: physical configuration (e.g.,
gripper type, part dimensions) plays a vital role in offsetting system limitations. The robot’s
errors are always measured in absolute positional terms, but how much those errors matter
depends on the margins built into the hardware.

For companies working with larger parts, more forgiving tolerances, or recyclable
production streams (where the occasional missed part can be recirculated or removed
without halting operations), a 94% pickup rate may be more than sufficient. Conversely, in
environments where 100% reliability is mandatory and margin for error is nonexistent, the
current version of this system would not be suitable. This speaks directly to Research
Objective 2: determining whether the system can offer a viable level of accuracy relative
to real-world functional needs. Based on these results, it is clear that while the system may
not suit every industry, it does align well with use cases that prioritize cost-effectiveness

and adaptability over extreme precision.
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Research Objective 3 called for an assessment of practical system limitations.
Among the most relevant findings are that system accuracy varies most significantly at the
extreme values of the tested variable configurations. For example, overly high conveyor
speeds or excessively low scanning heights both resulted in frequent detection failures.
Additionally, higher robot speed and acceleration limits degraded accuracy in unexpected
ways—possibly due to vibrations or instability in the lightweight camera mount. This trend
was not predicted in advance, and while further testing would be needed to isolate the
cause, it reinforces the importance of evaluating system behavior across its entire usable
range rather than assuming linear relationships.

These findings also suggest that improvements in robustness may not necessarily
require additional sensors or expensive upgrades. For example, refining software-based
prediction algorithms, optimizing velocity filtering, or improving mechanical stability of
the camera mount could enhance performance without changing the system’s fundamental
design. The ability to make such improvements while retaining the low-cost, single-camera
approach strengthens the system’s value as a modular automation concept.

Ultimately, the system’s feasibility should be judged by its reliability in real-world
pickup tasks—mnot just by abstract measures of accuracy. With modest tuning of end
effector geometry and part layout, this setup can achieve pickup success rates that approach
practical utility in a wide range of environments. Its simplicity, affordability, and ease of
deployment make it a strong candidate for manufacturers who are looking to take early
steps into automation without requiring the full infrastructure or precision demanded by

larger-scale systems.
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In conclusion, the system successfully meets the goals of all three research
objectives. Objective 1, determining maximal achievable accuracy, was addressed through
extensive testing. Objective 2, evaluating alignment with practical industry tolerances,
revealed that while the system may not suit high-precision applications, it performs well
enough to support general-purpose manufacturing workflows when configured correctly.
Objective 3, understanding system limitations, helped define the operational window
where the system is most effective and highlighted factors such as part speed, scanning
height, and iteration count that influence reliability. Taken together, these results affirm the
feasibility of this vision-guided robotic system as a viable proof of concept for smaller

manufacturers seeking scalable, low-cost entry into industrial automation.

5.4 Limitations and Future Work

While the system demonstrated promising performance and reliability, several
limitations inherent to the experimental setup were identified throughout the development
and testing process. These limitations represent areas where future work can directly
improve the system’s accuracy, consistency, and real-world applicability.

One key source of error was the manual alignment method used to evaluate the
accuracy of pickup predictions. As outlined in the methodology, the robot’s gripper was
manually jogged to align its center with the center of the part. Although visual alignment
provided a reasonably consistent benchmark, it inevitably introduced small measurement
inaccuracies, likely on the order of a few millimeters. While this is minor relative to the
20-30 mm average errors observed across most tests, it could still slightly skew accuracy

metrics. Future iterations of this work may incorporate a calibration tool—a 3D-printed
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device with matching geometry to the test part that attaches to the end effector and allows
more consistent centering. Alternatively, a downward-facing laser pointer, precisely
aligned to the gripper’s center, could be used to align with a marked center point on the
part, reducing user-dependent measurement variability.

Another experimental limitation was the conveyor belt control. While the belt
maintained relatively stable speeds once set, the adjustment dial was analog, making
precise and repeatable speed selection difficult. This analog nature also prevented speeds
below approximately 32 mm/s, where torque limitations likely caused inconsistent motion.
Future work could integrate a digitally controlled conveyor belt system capable of accurate
low-speed operation and consistent stepwise control. This would improve consistency
across trials and allow a broader range of part velocities to be explored, particularly at the
lower end where performance remains understudied.

Lighting conditions during testing also posed challenges. Although efforts were
made to reduce variability—such as closing shades and minimizing personnel movement—
ambient light from windows and ceiling fixtures introduced uncontrolled variance.
Shadows cast by people or changing daylight conditions affected part visibility and image
contrast. While the system was designed to be adaptable to uncontrolled lighting
environments, controlled lighting during the testing and development phase would have
helped isolate performance-limiting variables and refine the vision system’s robustness.

Camera limitations also played a role. The Epson camera used in this experiment
was a 5-megapixel monochromatic sensor, which, while sufficient for basic shape
recognition, introduced constraints in resolution and exposure control. A higher-resolution

sensor or one capable of faster shutter speeds could improve image clarity and part profile
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definition, especially during faster part movement. Additionally, the focus was adjusted
manually based on visual feedback, which introduces another layer of user-dependent
variability. A more advanced camera system with digital or assisted focus adjustment—
potentially using a calibration target—would ensure optimal image sharpness and
consistency. Further, while the Epson RC+ software allows manual adjustment of internal
camera settings (e.g., brightness, contrast, sharpness), future research could systematically
explore how these parameters affect detection reliability under varying conditions.
Beyond these limitations, there are several promising directions for future
development. One area involves refining the velocity estimation algorithm. Currently, the
system captures multiple part positions over time and averages the resulting velocities to
estimate motion. While effective, the process could be improved with active outlier
filtering. For example, the system could ignore velocity values that deviate sharply from
the running average—such as sudden spikes caused by blur, lighting changes, or early robot
movement—provided they exceed a reasonable threshold. Such a filter could help mitigate
inaccuracies introduced by initial motion irregularities, improving stability without
increasing computational complexity. Importantly, this kind of filtering must be carefully
designed to avoid rejecting legitimate values from rapid motion or sudden changes.
Expanding the tested parameter space is also a key avenue for future work. Several
variables—such as conveyor speed, robot speed, and robot acceleration—were tested in
only three configurations due to time constraints. Increasing the resolution of these tests by
using smaller intervals and more data points would allow a clearer understanding of

nonlinear trends and error inflection points. Additionally, decoupling the speed and
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acceleration variables and testing them independently would help clarify their distinct
effects on system performance.

Iterations could also be pushed beyond 14. As shown in Chapter IV, there is a clear
trend of improved accuracy with increased iteration count. Based on the exponential decay
trendline derived from the data, error continues to decrease as more iterations are used,
though with diminishing returns. For example, extrapolated values suggest that 25
iterations may result in an average error of 2.15 mm, 35 iterations in 0.71 mm, and 45
iterations in just 0.24 mm. These predictions are theoretical and assume diminishing error
will continue along the established curve, though practical constraints such as time and
range must also be considered. As noted, the system disregards the first three velocity
readings to avoid early jerk effects, meaning a 14-iteration configuration effectively uses
only 11 active readings. Testing higher iteration counts in future work would clarify how
far this trend continues before plateauing.

Additional tests should also examine alternate part delivery mechanisms, such as
angled slides or vibratory feeders, to evaluate how different motion profiles impact
detection and velocity prediction. Similarly, rotating the conveyor belt’s orientation within
the robot’s field of view—introducing greater x- and y-axis mixing—would offer insight
into system robustness across diverse spatial configurations. These tests could help validate
the system’s flexibility in adapting to complex layouts or unusual part trajectories.

Beyond experimental testing, future work should aim to deploy the system across
a range of industrial conditions. This includes testing with parts of different sizes, shapes,
materials, and surface finishes, as well as exploring a broader array of end effectors. Such

work would help determine whether the ~94% accuracy observed in this study holds
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consistently or varies depending on configuration and would allow researchers to quantify
the degree to which part and gripper dimensions offset positioning error in practice.

Additionally, incorporating lightweight artificial intelligence (Al) components may
help further optimize detection and estimation. While it is important to avoid
overcomplicating the system—especially given its goal of remaining accessible and
affordable—a simple Al model trained on part movement patterns or camera outputs could
improve both velocity estimation and part recognition. This could take the form of neural
network-based image analysis or predictive trajectory modeling based on prior data.
Importantly, any such addition should preserve the system’s ease of use and low overhead,
which are key differentiators from more expensive multi-sensor solutions.

In summary, the experimental limitations observed in this work provide clear paths
for immediate system improvement. Many of the errors stem from practical, solvable issues
in measurement precision, camera tuning, conveyor control, and lighting consistency.
Meanwhile, longer-term future work should focus on increasing testing coverage, refining
algorithms, exploring hardware variation, and potentially integrating modest Al assistance.
Each of these developments would enhance the system’s accuracy, repeatability, and
robustness, helping it better meet the demands of real-world industrial automation while

remaining cost-effective and adaptable.

5.5 Concluding Remarks
This work set out with three core research objectives: to determine the maximal
achievable accuracy of a single-camera robotic pick-and-place system, to evaluate the key

variables that influence this accuracy, and to assess the system’s practical viability in real-

97



world industrial applications. Through extensive experimental testing and analysis across
multiple operational parameters—including pickup method, scanning height, part velocity,
iteration count, and robot motion constraints—each objective was successfully addressed.
The data collected offers a clear picture of how design decisions influence system
performance, revealing key trends and trade-offs across configurations.

While the system does not meet the precision thresholds required by high-end
industrial robotics, it consistently demonstrated reliable detection and pickup performance
across a range of realistic conditions. These results support the system’s viability as a
robust and adaptable solution for simpler automation tasks. Its straightforward design, low
hardware complexity, and flexible testbed make it a compelling candidate for research,
prototyping, and certain real-world deployment scenarios—particularly where ultra-
precise motion is not essential. Importantly, the actual pickup success rate in applied
contexts will depend on system-specific factors such as the size of the gripper, the geometry
of the part, and the required tolerances of the task. When those elements are thoughtfully
configured, this system can maintain a high rate of successful operation. The ability to
compensate for accuracy limitations through part and gripper design enables a level of
adaptability not often emphasized in more rigid, high-precision systems.

The broader significance of this research lies not just in its proof-of-concept results,
but in what it represents for the accessibility of automation technology. Industrial
automation, while increasingly vital across sectors, often remains out of reach for small-
to-midsize manufacturers due to high capital costs, integration complexity, and the
expertise needed to deploy cutting-edge systems. These barriers disproportionately benefit

larger corporations with the infrastructure to support such investments. What this system
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demonstrates is that a simpler, more modular, and more cost-effective approach can still
yield meaningful automation—opening the door to efficiency improvements for companies
that have traditionally been excluded from these benefits. Moreover, the work points to a
promising path forward. Future enhancements in code sophistication, camera quality,
image processing algorithms, and intelligent velocity filtering may allow systems such as
this to shrink the performance gap between affordable solutions and top-tier industrial
setups. The integration of lightweight Al models to assist in prediction and refinement
further strengthens this potential. As these improvements are realized, the trade-off
between system cost and operational accuracy may narrow even further, making affordable
automation not only viable, but competitive. Beyond the technical contributions, this
research underscores the value of designing engineering solutions that prioritize
inclusivity, scalability, and practicality. The system’s adaptability to different
environments, its modular testing framework, and its focus on quantifiable performance
provide a model for how applied robotics can serve real-world needs—even when
perfection isn’t the goal. Creating tools that help level the playing field for smaller
manufacturers reflects not only a meaningful engineering challenge, but a socially
significant one as well. Ultimately, this project represents more than a set of experiments
or error statistics, it embodies a practical vision for bridging the gap between what
automation can do and who can afford to implement it. In exploring the capabilities of a
minimalist, single-camera solution, this research has delivered a compelling proof of
concept with genuine promise for future adoption, refinement, and impact. Its success lies
not just in the numbers it achieved, but in the possibility it creates for innovation,

accessibility, and more equitable participation in the future of automated manufacturing.
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Appendix A

Appendix A presents the full data for all predictive pickup tests conducted across
each method and parameter variation described in Chapter IV. Each table in this appendix
follows an identical structure: ten individual trials are shown along with recorded errors in
the X, Y, and U directions, and an “Outlier” column flags values identified as outliers based
on interquartile range (IQR) analysis. Below each trial block, statistical summaries are
provided, including averages, standard deviations, quartiles (Q1, Q2, Q3), IQR values, and
calculated upper/lower bounds for outlier detection. A blank value signifies a failed
attempt. Unless otherwise noted, all tables follow this structure. Each table caption

identifies the specific test case or parameter value under which the data was collected.

Table A.1 — Full data for the Direct Kinematic Method test case.

Trials X Y U Outlier

1 42.8 26 6.9 | No

2 32.6 20.8 7.4 | No

3 349 35.6 7 | No

4 33.3 35.1 6 | No

5 48 26.8 7.3 | No

6 31.9 20.8 7.5 | No

7 47.2 41 5.6 | No

8 47 36.1 5.4 | No

9 43.2 33.5 6.5 | No

10 40.2 25.7 8.1 | No
Averages 40.11 30.14 6.77
Standard Dev 6.11644505 6.64563014 0.83432608
Median 41.5 30.15 6.95
Q1 33.7 25.775 6.125
Q2 41.5 30.15 6.95
Q3 46.05 35475 7.375
IQR 12.35 9.7 1.25
Lower Bound 15.175 11.225 4.25
Upper Bound 64.575 50.025 9.25
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Table A.2 — Full data for the Hypotenuse Method test case.

Trials X Y U Outlier
1 8.4 43.8 6.1 | Yes
2 11.8 333 8.1 | No
3 14.6 334 4.4 | No
4 14.5 15.1 6| Yes
5 8.4 41.1 45| Yes
6 20.5 32.2 2.9 | No
7 3 32 5.6 | No
8 2.6 27 7 | No
9 234 32 7.4 | No
10 26.1 30.3 6 | No
Averages 13.33 32.02 5.8
Standard Dev 7.69195034 7.34326903 1.46833239
Median 13.15 32.1 6
Q1 8.4 30.725 4,775
Q2 13.15 32.1 6
Q3 19.025 33.375 6.775
IQR 10.625 2.65 2
Lower Bound -7.5375 26.75 1.775
Upper Bound 34.9625 37.35 9.775
Table A.3 — Full data for the Ambush Method test case.
Trials X Y U Outlier
1 42.47 25.69 10 | No
2 49.48 10.87 2.33 | No
3 33.88 27.35 7.62 | No
4 55.34 27.64 9.91 | No
5 0.33 22.99 5.21 | Yes
6 110.62 1.4 7.83 | Yes
7 3 4.96 3.37 | Yes
8 38.09 5.57 3| No
9 38.61 35.03 7.27 | No
10 45.07 15.66 5.8 | No
Averages 41.689 17.716 6.234
Standard Dev 28.8121372 11.0000984 2.61489273
Median 40.54 19.325 6.535
Q1 34.9325 6.895 3.83
Q2 40.54 19.325 6.535
Q3 48.3775 26.935 7.7775
IQR 13.445 20.04 3.9475
Lower Bound 14.765 -23.165 -2.09125
Upper Bound 68.545 56.995 13.69875
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Table A.4 — Full data for the 32 mm/s conveyor belt speed case.

A3

Trials X Y U Outlier
1 26.29 0 7.21 | No
2 294.95 7.62 7.81 | Yes
3 301.44 12.33 395 Yes
4 96.96 0 6.79 | No
5 27.11 0 6.82 | No
6 7.14 0 4.63 | No
7 20.25 0 3| No
8 40.38 10.59 493 | No
9 54.96 1.42 5.43 | No
10 28.88 6.93 4.61 | No
Averages 89.836 3.889 5.518
Standard Dev 106.738047 4.7014837 1.48979059
Median 34.63 0.71 5.18
Q1 26.495 0 4.615
Q2 34.63 0.71 5.18
Q3 86.46 7.4475 6.8125
IQR 59.965 7.4475 2.1975
Lower Bound -63.4525 -11.17125 1.31875
Upper Bound 176.4075 18.61875 10.10875
Table A.5 — Full data for the 50 mm/s conveyor belt speed case.
Trials X Y U Outlier
1 8.4 43.8 6.1 | Yes
2 11.8 33.3 8.1 | No
3 14.6 33.4 4.4 | No
4 14.5 15.1 6| Yes
5 8.4 41.1 4.5 | Yes
6 20.5 32.2 2.9 | No
7 3 32 5.6 | No
8 2.6 27 7 | No
9 234 32 7.4 | No
10 26.1 30.3 6 | No
Averages 13.33 32.02 5.8
Standard Dev 7.69195034 7.34326903 1.46833239
Median 13.15 32.1 6
Q1 8.4 30.725 4.775
Q2 13.15 32.1 6
Q3 19.025 33.375 6.775
IQR 10.625 2.65 2
Lower Bound -7.5375 26.75 1.775
Upper Bound 34.9625 37.35 9.775




Table A.6 — Full data for the 95 mm/s conveyor belt speed case.

A4

Trials X Y U Outlier
1 15.54 23.7 7.57 | No
2 No
3 No
4 0 13.46 5.02 | Yes
5 1.48 10.57 8.55 | No
6 No
7 59.45 9.52 7.33 | No
8 No
9 No
10 No
Averages 19.1175 14.3125 7.1175
Standard Dev 24.0627787 5.60861558 1.29436036
Median 8.51 12.015 7.45
Q1 1.11 10.3075 6.7525
Q2 8.51 12.015 7.45
Q3 26.5175 16.02 7.815
IQR 25.4075 5.7125 1.0625
Lower Bound -37.00125 1.73875 5.15875
Upper Bound 64.62875 24.58875 9.40875
Table A.7 — Full data for the 500 mm/s and mm/s? robot speed and acceleration limits case.
Trials X Y U Outlier
1 218.35 0 7.45 | Yes
2 No
3 24.17 0.64 6 | No
4 30.74 0 5.84 | No
5 0 0 6.09 | No
6 12.42 0 5.72 | No
7 0 2.17 5.19 | Yes
8 61.57 0 7.75 | Yes
9 20.41 0 6.44 | No
10 22.05 6.4 5.79 | Yes
Averages 433011111 1.02333333 6.25222222
Standard Dev 64.2727477 2.01807389 0.78869481
Median 22.05 0 6
Q1 12.42 0 5.79
Q2 22.05 0 6
Q3 30.74 0.64 6.44
IQR 18.32 0.64 0.65
Lower Bound -15.06 -0.96 4.815
Upper Bound 58.22 1.6 7.415




Table A.8 — Full data for the 1000 mm/s and mm/s? robot speed and acceleration limits

casc.

Table A.9 — Full data for the 1500 mm/s and mm/s? robot speed and acceleration limits

casc.

Trials X Y U Outlier
1 8.4 43.8 6.1 | Yes
2 11.8 33.3 8.1 | No
3 14.6 334 4.4 | No
4 14.5 15.1 6| Yes
5 8.4 41.1 45| Yes
6 20.5 322 2.9 | No
7 3 32 5.6 | No
8 2.6 27 7 | No
9 234 32 7.4 | No
10 26.1 30.3 6 | No
Averages 13.33 32.02 5.8
Standard Dev 7.69195034 7.34326903 1.46833239
Median 13.15 32.1 6
Q1 8.4 30.725 4.775
Q2 13.15 32.1 6
Q3 19.025 33.375 6.775
IQR 10.625 2.65 2
Lower Bound -7.5375 26.75 1.775
Upper Bound 34.9625 37.35 9.775

Trials X Y U Outlier
1 50.41 7.18 8.85 | No
2 125.65 0 4.83 | Yes
3 52.6 10.21 3.43 | No
4 48.15 2.82 6.04 | No
5 84.75 0 7.69 | Yes
6 29.87 4.44 3.8 | No
7 41.32 10.23 3.92 | No
8 46.05 0 5.35 | No
9 43.88 8.17 7.73 | No
10 24.25 9.74 8.4 | Yes
Averages 54.693 5.279 6.004
Standard Dev 28.137647 4.13586134 1.93120791
Median 47.1 5.81 5.695
Q1 41.96 0.705 4.1475
Q2 47.1 5.81 5.695
Q3 52.0525 9.3475 7.72
IQR 10.0925 8.6425 3.5725
Lower Bound 26.82125  -12.25875 -1.21125
Upper Bound 67.19125 22.31125 13.07875
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Table A.10 — Full data for the 650 mm scanning height case.

Trials X Y U Outlier

1 15.83 0 9.47 | No

2 31.66 0 8.26 | No

3 250.21 17.456 26.76 | Yes

4 157.49 10.87 6.97 | No

5 No

6 5.83 0.01 6.71 | No

7 4.04 9.35 9.65 | No

8 22.26 8.67 9.39 | No

9 No

10 64.97 0 8.13 | No
Averages 69.03625 5.7945 10.6675
Standard Dev 83.1414286 6.29335457 6.17088071
Median 26.96 4.34 8.825
Q1 13.33 0 7.84
Q2 26.96 4.34 8.825
Q3 88.1 9.73 9.515
IQR 74.77 9.73 1.675
Lower Bound -98.825 -14.595 5.3275
Upper Bound 200.255 24.325 12.0275

Table A.11 — Full data for the 680 mm scanning height case.
Trials X Y U Outlier

1 49.81 0 7.86 | No

2 28.14 16.74 7.45 | No

3 102 12.37 9.27 | No

4 23.99 23.82 9.49 | No

5 57.41 0.01 6.8 | No

6 65.39 10.62 8.47 | No

7 78.12 6.6 2.89 | Yes

8 36.31 0 7.11 | No

9 32.34 0.002 7.28 | No

10 18.24 5.78 6.14 | No
Averages 49.175 7.5942 7.276
Standard Dev 25.3812794 7.83371602 1.77359635
Median 43.06 6.19 7.365
Q1 29.19 0.004 6.8775
Q2 43.06 6.19 7.365
Q3 63.395 11.9325 8.3175
IQR 34.205 11.9285 1.44
Lower Bound -22.1175  -17.88875 4.7175
Upper Bound 114.7025 29.82525 10.4775
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Table A.12 — Full data for the 710 mm scanning height case.

Trials X Y U Outlier
1 24.228 0.005 5.891 | Yes
2 10.324 0 7.424 | No
3 26.103 0 7.647 | No
4 41.159 0 8.6033 | Yes
5 29.365 0 7.462 | No
6 0 0.3 7.136 | Yes
7 22.636 0.001 10.217 | Yes
8 17.3825 0.001 5.185 | Yes
9 0.001 6.004 7.147 | Yes
10 68.926 0 7.402 | Yes
Averages 24.01245 0.6311 7.41143
Standard Dev 19.3149419 1.7931863 1.29478019
Median 23.432 0.0005 7.413
Q1 12.088625 0 7.13875
Q2 23.432 0.0005 7.413
Q3 28.5495 0.004 7.60075
IQR 16.460875 0.004 0.462
Lower Bound -12.602688 -0.006 6.44575
Upper Bound 53.2408125 0.01 8.29375
Table A.13 — Full data for the 740 mm scanning height case.
Trials X Y U Outlier
1 0 16.01 6.72 | Yes
2 11.81 4.49 6.03 | No
3 36.82 3.08 5.5 | No
4 40.74 6.86 7.11 | No
5 0 2.31 6.94 | No
6 18.874 0.003 9.74 | No
7 24.93 0 8.86 | No
8 42.72 1.26 7.86 | No
9 16.873 3.062 7.241 | No
10 0 4.574 4.825 | No
Averages 19.2767 4.1649 7.0826
Standard Dev 15.8948224 4.43602648 1.40400422
Median 17.8735 3.071 7.025
Q1 2.9525 1.5225 6.2025
Q2 17.8735 3.071 7.025
Q3 33.8475 4.553 7.70525
IQR 30.895 3.0305 1.50275
Lower Bound -43.39 -3.02325 3.948375
Upper Bound 80.19 9.09875 9.959375
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Table A.14 — Full data for the 770 mm scanning height case.

Trials X Y U Outlier
1 8.4 43.8 6.1 | Yes
2 11.8 333 8.1 | No
3 14.6 334 4.4 | No
4 14.5 15.1 6| Yes
5 8.4 41.1 4.5 | Yes
6 20.5 32.2 2.9 | No
7 3 32 5.6 | No
8 2.6 27 7 | No
9 234 32 7.4 | No
10 26.1 30.3 6 | No
Averages 13.33 32.02 6
Standard Dev 7.69195034 7.34326903 1.46833239
Median 13.15 32.1 6
Q1 8.4 30.725 4.775
Q2 13.15 32.1 6
Q3 19.025 33.375 6.775
IQR 10.625 2.65 2
Lower Bound -7.5375 26.75 1.775
Upper Bound 34.9625 37.35 9.775
Table A.15 — Full data for the 800 mm scanning height case.
Trials X Y U Outlier
1 62.13 8.74 7.11 | No
2 No
3 No
4 No
5 No
6 No
7 No
8 No
9 No
10 No
Averages 62.13 8.74 7.11
Standard Dev 0 0 0
Median 62.13 8.74 7.11
Q1 62.13 8.74 7.11
Q2 62.13 8.74 7.11
Q3 62.13 8.74 7.11
IQR 0 0 0
Lower Bound 62.13 8.74 7.11
Upper Bound 62.13 8.74 7.11
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Table A.16 — Full data for the 7 iterations case. Excluded from trend analysis.

Trials X Y U Outlier
1 27.66 10.14 6.79 | No
2 42.12 6.43 5.85 | No
3 15.04 0 7.43 | Yes
4 21.78 8.61 7.04 | No
5 0 7.84 9.82 | Yes
6 76.86 10.87 7.25 | Yes
7 24.5 7.86 5.86 | No
8 15.69 0.1 10.04 | Yes
9 37.5 7.35 6.12 | No
10 0 2.76 7.33 | No
Averages 26.115 6.196 7.353
Standard Dev 21.4008024 3.70735269 1.4052192
Median 23.14 7.595 7.145
Q1 15.2025 3.6775 6.2875
Q2 23.14 7.595 7.145
Q3 35.04 8.4225 7.405
IQR 19.8375 4,745 1.1175
Lower Bound -14.55375 -3.44 4.61125
Upper Bound 64.79625 15.54 9.08125
Table A.17 — Full data for the 8 iterations case.
Trials X Y U Outlier
1 20.9 30.798 472 | Yes
2 17.347 36.092 6.652 | No
3 22.27 43.898 7.16 | No
4 3.854 36.5406 6.856 | No
5 8.998 30.558 7.39 | No
6 26.285 28.059 1.567 | Yes
7 12.246 26.837 7.707 | No
8 9.61 49.069 6.109 | Yes
9 34.671 30.592 6.72 | No
10 7.624 29.766 6.876 | No
Averages 16.3805 34.22096 6.1757
Standard Dev 9.16358164 6.88210347 1.72128528
Median 14.7965 30.695 6.788
Q1 9.151 29.964 6.24475
Q2 14.7965 30.695 6.788
Q3 21.9275 36.42845 7.089
IQR 12.7765 6.46445 0.84425
Lower Bound -10.01375  20.267325 4.978375
Upper Bound 41.09225 46.125125 8.355375
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Table A.18 — Full data for the 9 iterations case.

Trials X Y U Outlier
1 41.327 21.6 6.35 | No
2 21.512 35.281 7 | No
3 20.44 21.805 6.609 | No
4 54.3175 25.492 3.872 | No
5 33.85 36.249 9.022 | No
6 43.5 39.075 7.405 | No
7 0 35.266 5.367 | No
8 36.3187 35.853 7.078 | No
9 16.155 27.483 6.888 | No
10 24.79 23.235 1.708 | Yes
Averages 29.22102 30.1339 6.1299
Standard Dev 14.9426904 6.4903333 1.94247561
Median 29.32 31.3745 6.7485
Q1 20.708 23.79925 5.61275
Q2 29.32 31.3745 6.7485
Q3 40.074925 35.71 7.0585
IQR 19.366925 11.91075 1.44575
Lower Bound -8.3423875 5.933125 3.444125
Upper Bound 69.1253125 53.576125 9.227125
Table A.19 — Full data for the 10 iterations case.
Trials X Y U Outlier
1 8.4 43.8 6.1 | Yes
2 11.8 33.3 8.1 | No
3 14.6 334 4.4 | No
4 14.5 15.1 6| Yes
5 8.4 41.1 4.5 | Yes
6 20.5 322 2.9 | No
7 3 32 5.6 | No
8 2.6 27 7 | No
9 234 32 7.4 | No
10 26.1 30.3 6 | No
Averages 13.33 32.02 5.8
Standard Dev 7.69195034 7.34326903 1.46833239
Median 13.15 32.1 6
Q1 8.4 30.725 4.775
Q2 13.15 32.1 6
Q3 19.025 33.375 6.775
IQR 10.625 2.65 2
Lower Bound -7.5375 26.75 1.775
Upper Bound 34.9625 37.35 9.775
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Table A.20 — Full data for the 11 iterations case.

Trials X Y U Outlier

1 14.453 27.975 8.383 | No

2 19 25.84 4.699 | No

3 0.022 36.1 5.109 | No

4 46.559 23.927 10.849 | No

5 43.315 48.919 4.109 | No

6 17.735 38.51 3.843 | No

7 28.105 24.345 7.007 | No

8 1.481 23.024 7.838 | No

9 5.196 15.54 6.557 | No

10 10.614 37.808 7.98 | No
Averages 18.648 30.1988 6.6374
Standard Dev 15.4357066 9.36029415 2.10871184
Median 16.094 26.9075 6.782
Q1 6.5505 24.0315 4.8015
Q2 16.094 26.9075 6.782
Q3 25.82875 37.381 7.9445
IQR 19.27825 13.3495 3.143
Lower Bound -22.366875 4.00725 0.087
Upper Bound 54.746125 57.40525 12.659

Table A.21 — Full data for the 12 iterations case.
Trials X Y U Outlier
1 21.262 21.146 4.936 | No
2 10.926 25.514 4.772 | No
3 43.62 21.664 6.83 | Yes

4 11.435 30.309 7.639 | No

5 14.852 39.145 7.67 | No

6 2.233 28.124 7.41 | No

7 14.016 39.978 6.7784 | No

8 21.319 27.77 3.684 | No

9 62.755 31.336 7.478 | Yes

10 8.093 35.082 8.693 | No
Averages 21.0511 30.0068 6.58904
Standard Dev 17.4746345 6.22412108 1.50761783
Median 14.434 29.2165 7.12
Q1 11.05325 26.078 5.3966
Q2 14.434 29.2165 7.12
Q3 21.30475 34.1455 7.59875
IQR 10.2515 8.0675 2.20215
Lower Bound -4.324 13.97675 2.093375
Upper Bound 36.682 46.24675 10.901975
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Table A.22 — Full data for the 13 iterations case.

Trials X Y U Outlier

1 5.529 38.572 7.611 | No

2 6.932 20.386 7.081 | No

3 0 35.232 4.7515 | No

4 20.427 15.16 8.281 | No

5 35.378 28.403 4.89 | No

6 9.083 22.644 4.12 | No

7 21.041 46.071 7.853 | No

8 14.068 27.505 4.694 | No

9 10.297 41.132 6.025 | No

10 26.075 22.887 4.146 | No
Averages 14.883 29.7992 5.94525
Standard Dev 10.205478 9.53301527 1.54399824
Median 12.1825 27.954 5.4575
Q1 7.46975 22.70475 4.708375
Q2 12.1825 27.954 5.4575
Q3 20.8875 37.737 7.4785
IQR 13.41775 15.03225 2.770125
Lower Bound - 0.156375 0.5531875
Upper Bound 41.014125 60.285375 11.6336875

Table A.23 — Full data for the 14 iterations case.
Trials X Y U Outlier

1 10.34 11.13 7.69 | No

2 15.82 10.94 5.42 | No

3 7.78 0 8.95 | No

4 10.45 0 7.82 | No

5 25.65 14.61 4.41 | No

6 17.58 9.27 7.36 | No

7 9.63 6.4 7.16 | No

8 52.91 0 9.63 | Yes

9 42.46 3.59 5.72 | No

10 0 0 4.47 | No
Averages 19.262 5.594 6.863
Standard Dev 15.743913 5.32790052 1.70526274
Median 13.135 4.995 7.26
Q1 9.8075 0 5.495
Q2 13.135 4.995 7.26
Q3 23.6325 10.5225 7.7875
IQR 13.825 10.5225 2.2925
Lower Bound -10.93  -15.78375 2.05625
Upper Bound 44 .37 26.30625 11.22625
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Appendix B

Appendix B outlines the complete testing procedure used to evaluate the

performance of the vision-guided robotic system. The procedure was applied consistently

across all combinations of predictive pickup methods and system parameter variations. The

term “arming” refers to the process of initializing the robot and camera to begin tracking

for an approaching part. Although the robot did not perform physical pickups during

testing, it generated predicted x, y, and u coordinates at the moment of virtual pickup, which

were later compared to the actual required pickup coordinates. The step-by-step procedure

below provides a detailed description of how these values were collected across all test

Cascs.

Testing Procedure

1.

The robot was powered on and initialized using the Epson RC+ software
environment.

Experimental conditions were configured based on the variable under
investigation. For example, when testing the influence of conveyor belt speed,
the desired speed was set in the system parameters. Similarly, if scanning height
or other factors were being tested, those values were adjusted accordingly.

The conveyor belt was turned on and brought to the desired operating speed.
The system was armed, placing the robot in a ready state in its starting position
and allowing the camera to begin monitoring for incoming parts.

A test part was placed manually at the start of the conveyor in a randomized

orientation.
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10.

11.

12.

As the part moved along the conveyor, the robot system tracked its position and
orientation. The robot did not attempt an actual pickup during this phase; it only
executed predictive tracking routines.

At the precise moment the robot would have executed the pickup, the conveyor
belt was stopped, and the robot system displayed its predicted pickup
coordinates in the X, Y, and U (rotation) directions.

The predicted pickup coordinates were recorded.

Using the Epson RC+ jog function, the robot end effector was manually moved
to the physical location of the part to determine the actual X, Y, and U
coordinates required for a successful pickup. These coordinates were displayed
live through the jog interface.

The actual coordinates were recorded and later compared to the predicted values
to assess positional and rotational accuracy.

Steps 5—10 were repeated for a total of ten trials per test case.

This procedure was repeated for each combination of predictive pickup method

and test parameter condition evaluated in the study.
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